These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 33112901)
1. Acidification decreases microbial community diversity in the Salish Sea, a region with naturally high pCO2. Crummett LT PLoS One; 2020; 15(10):e0241183. PubMed ID: 33112901 [TBL] [Abstract][Full Text] [Related]
2. Field-based experimental acidification alters fouling community structure and reduces diversity. Brown NE; Therriault TW; Harley CD J Anim Ecol; 2016 Sep; 85(5):1328-39. PubMed ID: 27286309 [TBL] [Abstract][Full Text] [Related]
3. Intertidal epilithic bacteria diversity changes along a naturally occurring carbon dioxide and pH gradient. Taylor JD; Ellis R; Milazzo M; Hall-Spencer JM; Cunliffe M FEMS Microbiol Ecol; 2014 Sep; 89(3):670-8. PubMed ID: 24939799 [TBL] [Abstract][Full Text] [Related]
4. Minor impact of ocean acidification to the composition of the active microbial community in an Arctic sediment. Tait K; Laverock B; Shaw J; Somerfield PJ; Widdicombe S Environ Microbiol Rep; 2013 Dec; 5(6):851-60. PubMed ID: 24249294 [TBL] [Abstract][Full Text] [Related]
5. The response of marine picoplankton to ocean acidification. Newbold LK; Oliver AE; Booth T; Tiwari B; Desantis T; Maguire M; Andersen G; van der Gast CJ; Whiteley AS Environ Microbiol; 2012 Sep; 14(9):2293-307. PubMed ID: 22591022 [TBL] [Abstract][Full Text] [Related]
6. Responses of Intertidal Bacterial Biofilm Communities to Increasing pCO Kerfahi D; Harvey BP; Agostini S; Kon K; Huang R; Adams JM; Hall-Spencer JM Mar Biotechnol (NY); 2020 Dec; 22(6):727-738. PubMed ID: 32185542 [TBL] [Abstract][Full Text] [Related]
7. Marine bacterial communities are resistant to elevated carbon dioxide levels. Oliver AE; Newbold LK; Whiteley AS; van der Gast CJ Environ Microbiol Rep; 2014 Dec; 6(6):574-82. PubMed ID: 25756110 [TBL] [Abstract][Full Text] [Related]
8. Effect of increased pCO(2) on bacterial assemblage shifts in response to glucose addition in Fram Strait seawater mesocosms. Ray JL; Töpper B; An S; Silyakova A; Spindelböck J; Thyrhaug R; DuBow MS; Thingstad TF; Sandaa RA FEMS Microbiol Ecol; 2012 Dec; 82(3):713-23. PubMed ID: 22775552 [TBL] [Abstract][Full Text] [Related]
9. Consequences of increased temperature and acidification on bacterioplankton community composition during a mesocosm spring bloom in the Baltic Sea. Lindh MV; Riemann L; Baltar F; Romero-Oliva C; Salomon PS; Granéli E; Pinhassi J Environ Microbiol Rep; 2013 Apr; 5(2):252-62. PubMed ID: 23584969 [TBL] [Abstract][Full Text] [Related]
10. Quantification of the effects of ocean acidification on sediment microbial communities in the environment: the importance of ecosystem approaches. Hassenrück C; Fink A; Lichtschlag A; Tegetmeyer HE; de Beer D; Ramette A FEMS Microbiol Ecol; 2016 May; 92(5):fiw027. PubMed ID: 26887661 [TBL] [Abstract][Full Text] [Related]
11. Diversity and stability of coral endolithic microbial communities at a naturally high pCO Marcelino VR; Morrow KM; van Oppen MJH; Bourne DG; Verbruggen H Mol Ecol; 2017 Oct; 26(19):5344-5357. PubMed ID: 28748644 [TBL] [Abstract][Full Text] [Related]
12. Gut Microbiomes of the Eastern Oyster ( Pierce ML; Ward JE mSphere; 2019 Dec; 4(6):. PubMed ID: 31826972 [TBL] [Abstract][Full Text] [Related]
13. Changes in coral microbial communities in response to a natural pH gradient. Meron D; Rodolfo-Metalpa R; Cunning R; Baker AC; Fine M; Banin E ISME J; 2012 Sep; 6(9):1775-85. PubMed ID: 22437157 [TBL] [Abstract][Full Text] [Related]
14. Functional diversity and metabolic response in benthic communities along an ocean acidification gradient. Berlino M; Mangano MC; Di Bona G; Lucchese M; Terzo SMC; De Vittor C; D'Alessandro M; Esposito V; Gambi MC; Del Negro P; Sarà G Mar Environ Res; 2024 Jun; 198():106520. PubMed ID: 38685145 [TBL] [Abstract][Full Text] [Related]
15. Natural acidification changes the timing and rate of succession, alters community structure, and increases homogeneity in marine biofouling communities. Brown NEM; Milazzo M; Rastrick SPS; Hall-Spencer JM; Therriault TW; Harley CDG Glob Chang Biol; 2018 Jan; 24(1):e112-e127. PubMed ID: 28762601 [TBL] [Abstract][Full Text] [Related]
16. Patterns in microbiome composition differ with ocean acidification in anatomic compartments of the Mediterranean coral Astroides calycularis living at CO Biagi E; Caroselli E; Barone M; Pezzimenti M; Teixido N; Soverini M; Rampelli S; Turroni S; Gambi MC; Brigidi P; Goffredo S; Candela M Sci Total Environ; 2020 Jul; 724():138048. PubMed ID: 32251879 [TBL] [Abstract][Full Text] [Related]
17. Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy. Kerfahi D; Hall-Spencer JM; Tripathi BM; Milazzo M; Lee J; Adams JM Microb Ecol; 2014 May; 67(4):819-28. PubMed ID: 24493461 [TBL] [Abstract][Full Text] [Related]
18. Divergent ecosystem responses within a benthic marine community to ocean acidification. Kroeker KJ; Micheli F; Gambi MC; Martz TR Proc Natl Acad Sci U S A; 2011 Aug; 108(35):14515-20. PubMed ID: 21844331 [TBL] [Abstract][Full Text] [Related]
19. Stimulated bacterial growth under elevated p CO₂: results from an off-shore mesocosm study. Endres S; Galgani L; Riebesell U; Schulz KG; Engel A PLoS One; 2014; 9(6):e99228. PubMed ID: 24941307 [TBL] [Abstract][Full Text] [Related]
20. Biogenic habitat shifts under long-term ocean acidification show nonlinear community responses and unbalanced functions of associated invertebrates. Milazzo M; Alessi C; Quattrocchi F; Chemello R; D'Agostaro R; Gil J; Vaccaro AM; Mirto S; Gristina M; Badalamenti F Sci Total Environ; 2019 Jun; 667():41-48. PubMed ID: 30825820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]