These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 3311323)

  • 1. Some N-acyl-D-amino acid derivatives having antibotulinal properties.
    Paquet A; Rayman K
    Can J Microbiol; 1987 Jul; 33(7):577-82. PubMed ID: 3311323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron and the antibotulinal efficacy of nitrite.
    Tompkin RB; Christiansen LN; Shaparis AB
    Appl Environ Microbiol; 1979 Feb; 37(2):351-3. PubMed ID: 107856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. System for evaluating clostridial inhibition in cured meat products.
    Robach MC; Ivey FJ; Hickey CS
    Appl Environ Microbiol; 1978 Jul; 36(1):210-1. PubMed ID: 211934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrite, nitrite alternatives, and the control of Clostridium botulinum in cured meats.
    Pierson MD; Smoot LA
    Crit Rev Food Sci Nutr; 1982; 17(2):141-87. PubMed ID: 6751698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibotulinal efficacy of sulfur dioxide in meat.
    Tompkin RB; Christiansen LN; Shaparis AB
    Appl Environ Microbiol; 1980 Jun; 39(6):1096-9. PubMed ID: 6996613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium nitrite and sorbic acid effects on Clostridium botulinum spore germination and total microbial growth in chicken frankfurter emulsions during temperature abuse.
    Sofos JN; Busta FF; Allen CE
    Appl Environ Microbiol; 1979 Jun; 37(6):1103-9. PubMed ID: 384904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of processing variables on the outgrowth of Clostridium sporogenes PA 3679 spores in comminuted meat cured with sorbic acid and sodium nitrite.
    Robach MC
    Appl Environ Microbiol; 1979 Nov; 38(5):846-9. PubMed ID: 44445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Failure of nisin to inhibit outgrowth of Clostridium botulinum in a model cured meat system.
    Rayman K; Malik N; Hurst A
    Appl Environ Microbiol; 1983 Dec; 46(6):1450-2. PubMed ID: 6362566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study on the toxigenesis by Clostridium botulinum in nitrate and nitrite-reduced dry fermented sausages.
    Hospital XF; Hierro E; Stringer S; Fernández M
    Int J Food Microbiol; 2016 Feb; 218():66-70. PubMed ID: 26619314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of clostridial ferredoxin and pyruvate-ferredoxin oxidoreductase by sodium nitrite.
    Carpenter CE; Reddy DS; Cornforth DP
    Appl Environ Microbiol; 1987 Mar; 53(3):549-52. PubMed ID: 3555332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Causes of variation in botulinal inhibition in perishable canned cured meat.
    Tompkin RB; Christiansen LN; Shaparis AB
    Appl Environ Microbiol; 1978 May; 35(5):886-9. PubMed ID: 350156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of meat ingredients (sodium nitrite and erythorbate) and processing (vacuum storage and packaging atmosphere) on germination and outgrowth of Clostridium perfringens spores in ham during abusive cooling.
    Redondo-Solano M; Valenzuela-Martinez C; Cassada DA; Snow DD; Juneja VK; Burson DE; Thippareddi H
    Food Microbiol; 2013 Sep; 35(2):108-15. PubMed ID: 23664261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CHEMICAL SENSITIZATION OF CLOSTRIDIUM BOTULINUM SPORES TO RADIATION IN MEAT.
    KRABBENHOFT KL; CORLETT DA; ANDERSON AW; ELLIKER PR
    Appl Microbiol; 1964 Sep; 12(5):424-7. PubMed ID: 14215973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing nitrite inhibition of Clostridium botulinum with isoascorbate in perishable canned cured meat.
    Tompkin RB; Christiansen LN; Shaparis AB
    Appl Environ Microbiol; 1978 Jan; 35(1):59-61. PubMed ID: 341810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of potassium sorbate and other antibotulinal agents on germination and outgrowth of Clostridium botulinum type E spores in microcultures.
    Seward RA; Deibel RH; Lindsay RC
    Appl Environ Microbiol; 1982 Nov; 44(5):1212-21. PubMed ID: 6758699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptibility of Clostridium difficile to the food preservatives sodium nitrite, sodium nitrate and sodium metabisulphite.
    Lim SC; Foster NF; Riley TV
    Anaerobe; 2016 Feb; 37():67-71. PubMed ID: 26700884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proposed role of lactate in germination of hypochlorite-treated Clostridium botulinum spores.
    Foegeding PM; Busta FF
    Appl Environ Microbiol; 1983 Apr; 45(4):1369-73. PubMed ID: 6305268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differing L-alanine germination requirements of hypochlorite-treated Clostridium botulinum spores from two crops.
    Foegeding PM; Busta FF
    Appl Environ Microbiol; 1983 Apr; 45(4):1415-7. PubMed ID: 6305270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A note on the effect of nitrite inhibition on the metabolism of Clostridium botulinum.
    Woods LF; Wood JM
    J Appl Bacteriol; 1982 Feb; 52(1):109-10. PubMed ID: 7040327
    [No Abstract]   [Full Text] [Related]  

  • 20. Quantification of toxin-encoding mRNA from Clostridium botulinum type E in media containing sorbic acid or sodium nitrite by competitive RT-PCR.
    Sharkey FH; Markos SI; Haylock RW
    FEMS Microbiol Lett; 2004 Mar; 232(2):139-44. PubMed ID: 15033232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.