These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 33113335)
61. How motif environment influences transcription factor search dynamics: Finding a needle in a haystack. Dror I; Rohs R; Mandel-Gutfreund Y Bioessays; 2016 Jul; 38(7):605-12. PubMed ID: 27192961 [TBL] [Abstract][Full Text] [Related]
62. Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities. Narasimhan K; Lambert SA; Yang AW; Riddell J; Mnaimneh S; Zheng H; Albu M; Najafabadi HS; Reece-Hoyes JS; Fuxman Bass JI; Walhout AJ; Weirauch MT; Hughes TR Elife; 2015 Apr; 4():. PubMed ID: 25905672 [TBL] [Abstract][Full Text] [Related]
63. Low-Affinity Binding Sites and the Transcription Factor Specificity Paradox in Eukaryotes. Kribelbauer JF; Rastogi C; Bussemaker HJ; Mann RS Annu Rev Cell Dev Biol; 2019 Oct; 35():357-379. PubMed ID: 31283382 [TBL] [Abstract][Full Text] [Related]
64. A matter of time - How transient transcription factor interactions create dynamic gene regulatory networks. Swift J; Coruzzi GM Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):75-83. PubMed ID: 27546191 [TBL] [Abstract][Full Text] [Related]
65. Deciphering the dynamic code: DNA recognition by transcription factors in the ever-changing genome. Yao YM; Miodownik I; O'Hagan MP; Jbara M; Afek A Transcription; 2024 Jul; ():1-25. PubMed ID: 39033307 [TBL] [Abstract][Full Text] [Related]
66. An immune-cell transcription factor tethers DNA together. Liu Z; Zheng Y Nature; 2023 Dec; 624(7991):255-256. PubMed ID: 38030764 [No Abstract] [Full Text] [Related]
67. Advances around technologies investigating mitochondrial function and insights gained by their applications. Lee HK J Diabetes Investig; 2014 Mar; 5(2):144-6. PubMed ID: 24843752 [No Abstract] [Full Text] [Related]
68. Mesoscience in cell biology and cancer research. Qian H; Beltran AS Cancer Innov; 2022 Dec; 1(4):271-284. PubMed ID: 38089088 [TBL] [Abstract][Full Text] [Related]
69. Using human induced pluripotent stem cell-derived cardiomyocytes to understand the mechanisms driving cardiomyocyte maturation. Hamledari H; Asghari P; Jayousi F; Aguirre A; Maaref Y; Barszczewski T; Ser T; Moore E; Wasserman W; Klein Geltink R; Teves S; Tibbits GF Front Cardiovasc Med; 2022; 9():967659. PubMed ID: 36061558 [TBL] [Abstract][Full Text] [Related]
70. Transcriptional enhancers at 40: evolution of a viral DNA element to nuclear architectural structures. Nair SJ; Suter T; Wang S; Yang L; Yang F; Rosenfeld MG Trends Genet; 2022 Oct; 38(10):1019-1047. PubMed ID: 35811173 [TBL] [Abstract][Full Text] [Related]
71. Advances in visualizing transcription factor - DNA interactions. Price RM; BudzyĆski MA; Kundra S; Teves SS Genome; 2021 Apr; 64(4):449-466. PubMed ID: 33113335 [TBL] [Abstract][Full Text] [Related]
72. Methods for Analysis of Transcription Factor DNA-Binding Specificity In Vitro. Jolma A; Taipale J Subcell Biochem; 2011; 52():155-73. PubMed ID: 21557082 [TBL] [Abstract][Full Text] [Related]
73. DNA-dependent formation of transcription factor pairs alters their binding specificity. Jolma A; Yin Y; Nitta KR; Dave K; Popov A; Taipale M; Enge M; Kivioja T; Morgunova E; Taipale J Nature; 2015 Nov; 527(7578):384-8. PubMed ID: 26550823 [TBL] [Abstract][Full Text] [Related]
74. Visualizing transcription factor dynamics in living cells. Liu Z; Tjian R J Cell Biol; 2018 Apr; 217(4):1181-1191. PubMed ID: 29378780 [TBL] [Abstract][Full Text] [Related]
75. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model. Oliver P; Peralta-Gil M; Tabche ML; Merino E BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672 [TBL] [Abstract][Full Text] [Related]