BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33113508)

  • 1. Characterization of a NAPL-contaminated site using the partitioning behavior of noble gases.
    Cho I; Ju Y; Lee SS; Kaown D; Lee KK
    J Contam Hydrol; 2020 Nov; 235():103733. PubMed ID: 33113508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using ²²²Rn as a naturally occurring tracer to estimate NAPL contamination in an aquifer.
    Yoon YY; Koh DC; Lee KY; Cho SY; Yang JH; Lee KK
    Appl Radiat Isot; 2013 Nov; 81():233-7. PubMed ID: 23602707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater.
    Mateas DJ; Tick GR; Carroll KC
    J Contam Hydrol; 2017 Sep; 204():40-56. PubMed ID: 28780996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Push-pull partitioning tracer tests using radon-222 to quantify non-aqueous phase liquid contamination.
    Davis BM; Istok JD; Semprini L
    J Contam Hydrol; 2002 Sep; 58(1-2):129-46. PubMed ID: 12236552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A large-scale experiment on mass transfer of trichloroethylene from the unsaturated zone of a sandy aquifer to its interfaces.
    Jellali S; Benremita H; Muntzer P; Razakarisoa O; Schäfer G
    J Contam Hydrol; 2003 Jan; 60(1-2):31-53. PubMed ID: 12498573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-well "push-pull" partitioning tracer test for NAPL detection in the subsurface.
    Istok JD; Field JA; Schroth MH; Davis BM; Dwarakanath V
    Environ Sci Technol; 2002 Jun; 36(12):2708-16. PubMed ID: 12099468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
    Rivett MO; Dearden RA; Wealthall GP
    J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation.
    Pierce AA; Chapman SW; Zimmerman LK; Hurley JC; Aravena R; Cherry JA; Parker BL
    J Contam Hydrol; 2018 May; 212():96-114. PubMed ID: 29530334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes.
    Palau J; Marchesi M; Chambon JC; Aravena R; Canals À; Binning PJ; Bjerg PL; Otero N; Soler A
    Sci Total Environ; 2014 Mar; 475():61-70. PubMed ID: 24419287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of NAPL Source Morphology on Mass Transfer in the Vadose Zone.
    Petri BG; Fučík R; Illangasekare TH; Smits KM; Christ JA; Sakaki T; Sauck CC
    Ground Water; 2015; 53(5):685-98. PubMed ID: 25535651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The complex spatial distribution of trichloroethene and the probability of NAPL occurrence in the rock matrix of a mudstone aquifer.
    Shapiro AM; Goode DJ; Imbrigiotta TE; Lorah MM; Tiedeman CR
    J Contam Hydrol; 2019 Jun; 223():103478. PubMed ID: 31003861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remediation of TCE-contaminated groundwater using KMnO
    Yang ZH; Ou JH; Dong CD; Chen CW; Lin WH; Kao CM
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34027-34038. PubMed ID: 30232775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea.
    Lee SS; Kaown D; Lee KK
    J Contam Hydrol; 2015 Nov; 182():231-43. PubMed ID: 26433603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydraulic containment of TCE contaminated groundwater using pulsed pump-and-treat: Performance evaluation and vapor intrusion risk assessment.
    Bae MS; Kim JH; Lee S
    Environ Pollut; 2024 Apr; 347():123683. PubMed ID: 38428797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulations of radon as an in situ partitioning tracer for quantifying NAPL contamination using push-pull tests.
    Davis BM; Istok JD; Semprini L
    J Contam Hydrol; 2005 Jun; 78(1-2):87-103. PubMed ID: 15949608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radon as a naturally occurring tracer for the assessment of residual NAPL contamination of aquifers.
    Schubert M; Paschke A; Lau S; Geyer W; Knöller K
    Environ Pollut; 2007 Feb; 145(3):920-7. PubMed ID: 16781031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of a gas-phase partitioning tracer test conducted in an unsaturated fractured-clay formation.
    Simon MA; Brusseau ML
    J Contam Hydrol; 2007 Mar; 90(3-4):146-58. PubMed ID: 17157956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature influence on the NAPL-water interfacial area between 10 °C and 60 °C for trichloroethylene.
    Koproch N; Dahmke A; Schwardt A; Köber R
    J Contam Hydrol; 2022 Feb; 245():103932. PubMed ID: 34952400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.
    Chong AD; Mayer KU
    J Contam Hydrol; 2017 Sep; 204():1-10. PubMed ID: 28830695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1,4-Dioxane cosolvency impacts on trichloroethene dissolution and sorption.
    Milavec J; Tick GR; Brusseau ML; Carroll KC
    Environ Pollut; 2019 Sep; 252(Pt A):777-783. PubMed ID: 31200203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.