BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 33113682)

  • 1. In-situ lipid and fatty acid extraction methods to recover viable products from Nannochloropsis sp.
    Brennan B; Regan F
    Sci Total Environ; 2020 Dec; 748():142464. PubMed ID: 33113682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of colour temperatures in the cultivation of Dunaliella salina and Nannochloropsis oculata in the production of lipids and carbohydrates.
    Pavón-Suriano SG; Ortega-Clemente LA; Curiel-Ramírez S; Jiménez-García MI; Pérez-Legaspi IA; Robledo-Narváez PN
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21332-21340. PubMed ID: 28741207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production.
    Ma Y; Wang Z; Yu C; Yin Y; Zhou G
    Bioresour Technol; 2014 Sep; 167():503-9. PubMed ID: 25013933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orange Peel Waste as Feedstock for the Production of Glycerol-Free Biodiesel by the Microalgae
    Tardiolo G; Nicolò MS; Drago C; Genovese C; Fava G; Gugliandolo C; D'Antona N
    Molecules; 2023 Sep; 28(19):. PubMed ID: 37836689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation, mass cultivation, and biodiesel production potential of marine microalgae identified from Bay of Bengal.
    Arunachalam Sivagurulingam AP; Sivanandi P; Pandian S
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):6646-6655. PubMed ID: 34453254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Process optimization of one-step direct transesterification and dual-step extraction-transesterification of the Chlorococcum-Nannochloropsis consortium for biodiesel production.
    Mathimani T; Le TT; Salmen SH; Ali Alharbi S; Jhanani GK
    Environ Res; 2024 Jan; 240(Pt 1):117580. PubMed ID: 37925129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraction of microalgal lipids and the influence of polar lipids on biodiesel production by lipase-catalyzed transesterification.
    Navarro López E; Robles Medina A; González Moreno PA; Esteban Cerdán L; Molina Grima E
    Bioresour Technol; 2016 Sep; 216():904-13. PubMed ID: 27323242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the various solvent extraction method via microwave irradiation for extraction of lipids from marine microalgae in biodiesel production.
    Teo CL; Idris A
    Bioresour Technol; 2014 Nov; 171():477-81. PubMed ID: 25201293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemistry and Biotechnology of Lipid Accumulation in the Microalga
    Xu Y
    J Agric Food Chem; 2022 Sep; 70(37):11500-11509. PubMed ID: 36083864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of microalgae species based on their lipid content, fatty acid profile and apparent fuel properties for biodiesel production.
    Deshmukh S; Bala K; Kumar R
    Environ Sci Pollut Res Int; 2019 Aug; 26(24):24462-24473. PubMed ID: 31230233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty Acid Composition and Cytotoxic Activity of Lipid Extracts from
    Castejón N; Marko D
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of optimum fatty acid extraction methods for two different microalgae Phaeodactylum tricornutum and Haematococcus pluvialis for food and biodiesel applications.
    Otero P; Saha SK; Gushin JM; Moane S; Barron J; Murray P
    Anal Bioanal Chem; 2017 Jul; 409(19):4659-4667. PubMed ID: 28593370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid Production from Nannochloropsis.
    Ma XN; Chen TP; Yang B; Liu J; Chen F
    Mar Drugs; 2016 Mar; 14(4):. PubMed ID: 27023568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of cultivation period on growth and biodiesel properties of microalga Nannochloropsis gaditana 1049.
    Hu Q; Xiang W; Dai S; Li T; Yang F; Jia Q; Wang G; Wu H
    Bioresour Technol; 2015 Sep; 192():157-64. PubMed ID: 26025353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a malonyl CoA-acyl carrier protein transacylase and its regulatory role in fatty acid biosynthesis in oleaginous microalga Nannochloropsis oceanica.
    Chen JW; Liu WJ; Hu DX; Wang X; Balamurugan S; Alimujiang A; Yang WD; Liu JS; Li HY
    Biotechnol Appl Biochem; 2017 Sep; 64(5):620-626. PubMed ID: 27572053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of saponifiable lipids from wet microalgal biomass for biodiesel production.
    Jiménez Callejón MJ; Robles Medina A; Macías Sánchez MD; Hita Peña E; Esteban Cerdán L; González Moreno PA; Molina Grima E
    Bioresour Technol; 2014 Oct; 169():198-205. PubMed ID: 25058294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biobased Solvents for Pressurized Liquid Extraction of
    Blanco-Llamero C; Señoráns FJ
    Mar Drugs; 2021 Feb; 19(2):. PubMed ID: 33673060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of a screening procedure of microalgae for biodiesel production: application to the genus of marine microalgae Nannochloropsis.
    Taleb A; Pruvost J; Legrand J; Marec H; Le-Gouic B; Mirabella B; Legeret B; Bouvet S; Peltier G; Li-Beisson Y; Taha S; Takache H
    Bioresour Technol; 2015 Feb; 177():224-32. PubMed ID: 25496942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biorefinery for Nannochloropsis: Induction, harvesting, and extraction of EPA-rich oil and high-value protein.
    Chua ET; Schenk PM
    Bioresour Technol; 2017 Nov; 244(Pt 2):1416-1424. PubMed ID: 28624245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain selection of microalgae isolated from Tunisian coast: characterization of the lipid profile for potential biodiesel production.
    Gnouma A; Sehli E; Medhioub W; Ben Dhieb R; Masri M; Mehlmer N; Slimani W; Sebai K; Zouari A; Brück T; Medhioub A
    Bioprocess Biosyst Eng; 2018 Oct; 41(10):1449-1459. PubMed ID: 29946745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.