BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 33113682)

  • 41. Recent developments of downstream processing for microbial lipids and conversion to biodiesel.
    Yellapu SK; Bharti ; Kaur R; Kumar LR; Tiwari B; Zhang X; Tyagi RD
    Bioresour Technol; 2018 May; 256():515-528. PubMed ID: 29472122
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Low solvent, low temperature method for extracting biodiesel lipids from concentrated microalgal biomass.
    Olmstead IL; Kentish SE; Scales PJ; Martin GJ
    Bioresour Technol; 2013 Nov; 148():615-9. PubMed ID: 24080444
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Increased biomass and lipid production by continuous cultivation of Nannochloropsis salina transformant overexpressing a bHLH transcription factor.
    Kang NK; Kim EK; Sung MG; Kim YU; Jeong BR; Chang YK
    Biotechnol Bioeng; 2019 Mar; 116(3):555-568. PubMed ID: 30536876
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lipase-catalyzed in-situ biosynthesis of glycerol-free biodiesel from heterotrophic microalgae, Aurantiochytrium sp. KRS101 biomass.
    Kim KH; Lee OK; Kim CH; Seo JW; Oh BR; Lee EY
    Bioresour Technol; 2016 Jul; 211():472-7. PubMed ID: 27035480
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium.
    Safafar H; Hass MZ; Møller P; Holdt SL; Jacobsen C
    Mar Drugs; 2016 Jul; 14(8):. PubMed ID: 27483291
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of Nitrogen and Phosphorus on Microalgal Growth, Biomass, Lipid, and Fatty Acid Production: An Overview.
    Yaakob MA; Mohamed RMSR; Al-Gheethi A; Aswathnarayana Gokare R; Ambati RR
    Cells; 2021 Feb; 10(2):. PubMed ID: 33673015
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct enzymatic ethanolysis of potential
    He Y; Wang X; Wei H; Zhang J; Chen B; Chen F
    Biotechnol Biofuels; 2019; 12():78. PubMed ID: 30992715
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pyrogenic transformation of Nannochloropsis oceanica into fatty acid methyl esters without oil extraction for estimating total lipid content.
    Kim J; Jung JM; Lee J; Kim KH; Choi TO; Kim JK; Jeon YJ; Kwon EE
    Bioresour Technol; 2016 Jul; 212():55-61. PubMed ID: 27082269
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-purity biodiesel production from microalgae and added-value lipid extraction: a new process.
    Veillette M; Giroir-Fendler A; Faucheux N; Heitz M
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):109-19. PubMed ID: 24859519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microwave-Assisted Brine Extraction for Enhancement of the Quantity and Quality of Lipid Production from Microalgae
    Zghaibi N; Omar R; Kamal SMM; Biak DRA; Harun R
    Molecules; 2019 Oct; 24(19):. PubMed ID: 31590304
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach.
    Hernández D; Solana M; Riaño B; García-González MC; Bertucco A
    Bioresour Technol; 2014 Oct; 170():370-378. PubMed ID: 25151474
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Supercritical CO₂ Extraction of
    Elst K; Maesen M; Jacobs G; Bastiaens L; Voorspoels S; Servaes K
    Molecules; 2018 Jul; 23(8):. PubMed ID: 30046024
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microalgae Characterization for Consolidated and New Application in Human Food, Animal Feed and Nutraceuticals.
    Molino A; Iovine A; Casella P; Mehariya S; Chianese S; Cerbone A; Rimauro J; Musmarra D
    Int J Environ Res Public Health; 2018 Nov; 15(11):. PubMed ID: 30388801
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microalgal lipids biochemistry and biotechnological perspectives.
    Bellou S; Baeshen MN; Elazzazy AM; Aggeli D; Sayegh F; Aggelis G
    Biotechnol Adv; 2014 Dec; 32(8):1476-93. PubMed ID: 25449285
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimization of lipid extraction from Salvinia molesta for biodiesel production using RSM and its FAME analysis.
    Mubarak M; Shaija A; Suchithra TV
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14047-55. PubMed ID: 27044288
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cell density, Lipidomic profile, and fatty acid characterization as selection criteria in bioprospecting of microalgae and cyanobacterium for biodiesel production.
    Shanmugam S; Mathimani T; Anto S; Sudhakar MP; Kumar SS; Pugazhendhi A
    Bioresour Technol; 2020 May; 304():123061. PubMed ID: 32127245
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mixed microalgae consortia growth under higher concentration of CO
    Aslam A; Thomas-Hall SR; Manzoor M; Jabeen F; Iqbal M; Uz Zaman Q; Schenk PM; Asif Tahir M
    J Photochem Photobiol B; 2018 Feb; 179():126-133. PubMed ID: 29367147
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel microalgal lipid extraction method using biodiesel (fatty acid methyl esters) as an extractant.
    Huang WC; Park CW; Kim JD
    Bioresour Technol; 2017 Feb; 226():94-98. PubMed ID: 27992796
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polar Lipid Profile of Nannochloropsis oculata Determined Using a Variety of Lipid Extraction Procedures.
    Servaes K; Maesen M; Prandi B; Sforza S; Elst K
    J Agric Food Chem; 2015 Apr; 63(15):3931-41. PubMed ID: 25801099
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microalgae to biodiesel: A novel green conversion method for high-quality lipids recovery and in-situ transesterification to fatty acid methyl esters.
    Oliva G; Buonerba A; Grassi A; Hasan SW; Korshin GV; Zorpas AA; Belgiorno V; Naddeo V; Zarra T
    J Environ Manage; 2024 Apr; 357():120830. PubMed ID: 38583383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.