BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33113690)

  • 21. Predicting Arsenic in Drinking Water Wells of the Central Valley, California.
    Ayotte JD; Nolan BT; Gronberg JA
    Environ Sci Technol; 2016 Jul; 50(14):7555-63. PubMed ID: 27399813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Delineating sources of groundwater recharge and carbon in Holocene aquifers of the central Gangetic basin using stable isotopic signatures.
    Kumar M; Ramanathan AL; Mukherjee A; Sawlani R; Ranjan S
    Isotopes Environ Health Stud; 2019 Jun; 55(3):254-271. PubMed ID: 31012329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Groundwater depletion causing reduction of baseflow triggering Ganges river summer drying.
    Mukherjee A; Bhanja SN; Wada Y
    Sci Rep; 2018 Aug; 8(1):12049. PubMed ID: 30104737
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of Covid-19 Lockdown on Availability of Drinking Water in the Arsenic-Affected Ganges River Basin.
    Duttagupta S; Bhanja SN; Dutta A; Sarkar S; Chakraborty M; Ghosh A; Mondal D; Mukherjee A
    Int J Environ Res Public Health; 2021 Mar; 18(6):. PubMed ID: 33802172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of aquifer media in determining the fate of polycyclic aromatic hydrocarbons in the natural water and sediments along the lower Ganges river basin.
    Duttagupta S; Mukherjee A; Routh J; Devi LG; Bhattacharya A; Bhattacharya J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(4):354-373. PubMed ID: 31846394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contribution of the aquitard to the regional groundwater hydrochemistry of the underlying confined aquifer in the Pearl River Delta, China.
    Wang Y; Jiao JJ; Cherry JA; Lee CM
    Sci Total Environ; 2013 Sep; 461-462():663-71. PubMed ID: 23770547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine Learning Models of Arsenic in Private Wells Throughout the Conterminous United States As a Tool for Exposure Assessment in Human Health Studies.
    Lombard MA; Bryan MS; Jones DK; Bulka C; Bradley PM; Backer LC; Focazio MJ; Silverman DT; Toccalino P; Argos M; Gribble MO; Ayotte JD
    Environ Sci Technol; 2021 Apr; 55(8):5012-5023. PubMed ID: 33729798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnitude of arsenic pollution in the Mekong and Red River Deltas--Cambodia and Vietnam.
    Berg M; Stengel C; Pham TK; Pham HV; Sampson ML; Leng M; Samreth S; Fredericks D
    Sci Total Environ; 2007 Jan; 372(2-3):413-25. PubMed ID: 17081593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hazards and influence factors of arsenic in the upper pleistocene aquifer, Hetao region, using machine learning modeling.
    Fu Y; Cao W; Nan T; Ren Y; Li Z
    Sci Total Environ; 2024 Mar; 916():170247. PubMed ID: 38272097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain).
    Rodriguez-Galiano V; Mendes MP; Garcia-Soldado MJ; Chica-Olmo M; Ribeiro L
    Sci Total Environ; 2014 Apr; 476-477():189-206. PubMed ID: 24463255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Occurrence and geochemical behavior of arsenic in a coastal aquifer-aquitard system of the Pearl River Delta, China.
    Wang Y; Jiao JJ; Cherry JA
    Sci Total Environ; 2012 Jun; 427-428():286-97. PubMed ID: 22554534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapped Predictions of Manganese and Arsenic in an Alluvial Aquifer Using Boosted Regression Trees.
    Knierim KJ; Kingsbury JA; Belitz K; Stackelberg PE; Minsley BJ; Rigby JR
    Ground Water; 2022 May; 60(3):362-376. PubMed ID: 34951475
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controls on high and low groundwater arsenic on the opposite banks of the lower reaches of River Ganges, Bengal basin, India.
    Mukherjee A; Fryar AE; Eastridge EM; Nally RS; Chakraborty M; Scanlon BR
    Sci Total Environ; 2018 Dec; 645():1371-1387. PubMed ID: 30248860
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting the Distribution of Arsenic in Groundwater by a Geospatial Machine Learning Technique in the Two Most Affected Districts of Assam, India: The Public Health Implications.
    Nath B; Chowdhury R; Ni-Meister W; Mahanta C
    Geohealth; 2022 Mar; 6(3):e2021GH000585. PubMed ID: 35340282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogeochemistry and arsenic contamination of groundwater in the Ganges Delta Plain, Bangladesh.
    Halim MA; Majumder RK; Nessa SA; Hiroshiro Y; Uddin MJ; Shimada J; Jinno K
    J Hazard Mater; 2009 May; 164(2-3):1335-45. PubMed ID: 18977593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Abnormally high ammonium of natural origin in a coastal aquifer-aquitard system in the Pearl River Delta, China.
    Jiao JJ; Wang Y; Cherry JA; Wang X; Zhi B; Du H; Wen D
    Environ Sci Technol; 2010 Oct; 44(19):7470-5. PubMed ID: 20806932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arsenic in the multi-aquifer system of the Mekong Delta, Vietnam: analysis of large-scale spatial trends and controlling factors.
    Erban LE; Gorelick SM; Fendorf S
    Environ Sci Technol; 2014 Jun; 48(11):6081-8. PubMed ID: 24849074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning.
    Knoll L; Breuer L; Bach M
    Sci Total Environ; 2019 Jun; 668():1317-1327. PubMed ID: 31018471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arsenic mobilization in the aquifers of three physiographic settings of West Bengal, India: understanding geogenic and anthropogenic influences.
    Bhowmick S; Nath B; Halder D; Biswas A; Majumder S; Mondal P; Chakraborty S; Nriagu J; Bhattacharya P; Iglesias M; Roman-Ross G; Guha Mazumder D; Bundschuh J; Chatterjee D
    J Hazard Mater; 2013 Nov; 262():915-23. PubMed ID: 22999019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Depth Stratification Leads to Distinct Zones of Manganese and Arsenic Contaminated Groundwater.
    Ying SC; Schaefer MV; Cock-Esteb A; Li J; Fendorf S
    Environ Sci Technol; 2017 Aug; 51(16):8926-8932. PubMed ID: 28695739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.