These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 33113702)

  • 1. Bioenergy recovery from wastewater produced by hydrothermal processing biomass: Progress, challenges, and opportunities.
    Leng L; Zhang W; Leng S; Chen J; Yang L; Li H; Jiang S; Huang H
    Sci Total Environ; 2020 Dec; 748():142383. PubMed ID: 33113702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technological advancements in valorisation of industrial effluents employing hydrothermal liquefaction of biomass: Strategic innovations, barriers and perspectives.
    Rout PR; Goel M; Pandey DS; Briggs C; Sundramurthy VP; Halder N; Mohanty A; Mukherjee S; Varjani S
    Environ Pollut; 2023 Jan; 316(Pt 2):120667. PubMed ID: 36395914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of biochemical and thermochemical energy conversion routes of wastewater grown algal biomass.
    Choudhary P; Assemany PP; Naaz F; Bhattacharya A; Castro JS; Couto EADC; Calijuri ML; Pant KK; Malik A
    Sci Total Environ; 2020 Jul; 726():137961. PubMed ID: 32334349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aqueous phase recirculation during hydrothermal carbonization of microalgae and soybean straw: A comparison study.
    Leng S; Li W; Han C; Chen L; Chen J; Fan L; Lu Q; Li J; Leng L; Zhou W
    Bioresour Technol; 2020 Feb; 298():122502. PubMed ID: 31830659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes.
    Zhou Y; Schideman L; Zheng M; Martin-Ryals A; Li P; Tommaso G; Zhang Y
    Water Sci Technol; 2015; 72(12):2139-47. PubMed ID: 26676001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process.
    Leng L; Li J; Wen Z; Zhou W
    Bioresour Technol; 2018 May; 256():529-542. PubMed ID: 29459104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of aqueous phase recirculation on hydrothermal liquefaction/carbonization of biomass: A review.
    Leng S; Leng L; Chen L; Chen J; Chen J; Zhou W
    Bioresour Technol; 2020 Dec; 318():124081. PubMed ID: 32927317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of algae (Scenedesmus obliquus) biomass pre-treatment on bio-oil production in hydrothermal liquefaction (HTL): Biochar and aqueous phase utilization studies.
    Mahima J; Sundaresh RK; Gopinath KP; Rajan PSS; Arun J; Kim SH; Pugazhendhi A
    Sci Total Environ; 2021 Jul; 778():146262. PubMed ID: 33714809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supercritical water gasification (SCWG) as a potential tool for the valorization of phycoremediation-derived waste algal biomass for biofuel generation.
    Leong YK; Chen WH; Lee DJ; Chang JS
    J Hazard Mater; 2021 Sep; 418():126278. PubMed ID: 34098259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing.
    Patel B; Guo M; Izadpanah A; Shah N; Hellgardt K
    Bioresour Technol; 2016 Jan; 199():288-299. PubMed ID: 26514623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Algal biofuels from urban wastewaters: maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass.
    Selvaratnam T; Pegallapati AK; Reddy H; Kanapathipillai N; Nirmalakhandan N; Deng S; Lammers PJ
    Bioresour Technol; 2015 Apr; 182():232-238. PubMed ID: 25704095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomass production in high rate ponds and hydrothermal liquefaction: Wastewater treatment and bioenergy integration.
    Couto E; Calijuri ML; Assemany P
    Sci Total Environ; 2020 Jul; 724():138104. PubMed ID: 32408433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable microalgal biomass valorization to bioenergy: Key challenges and future perspectives.
    Tawfik A; Ismail S; Elsayed M; Qyyum MA; Rehan M
    Chemosphere; 2022 Jun; 296():133812. PubMed ID: 35149012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aviation fuel based on wastewater-grown microalgae: Challenges and opportunities of hydrothermal liquefaction and hydrotreatment.
    Marangon BB; Castro JS; Calijuri ML
    J Environ Manage; 2024 Mar; 354():120418. PubMed ID: 38382440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated anaerobic digestion and algae cultivation for energy recovery and nutrient supply from post-hydrothermal liquefaction wastewater.
    Yang L; Si B; Tan X; Chu H; Zhou X; Zhang Y; Zhang Y; Zhao F
    Bioresour Technol; 2018 Oct; 266():349-356. PubMed ID: 29982057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved methane production and energy recovery of post-hydrothermal liquefaction waste water via integration of zeolite adsorption and anaerobic digestion.
    Li R; Liu D; Zhang Y; Zhou J; Tsang YF; Liu Z; Duan N; Zhang Y
    Sci Total Environ; 2019 Feb; 651(Pt 1):61-69. PubMed ID: 30227293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solids Residence Time Impacts Carbon Dynamics and Bioenergy Feedstock Potential in Phototrophic Wastewater Treatment Systems.
    Bradley IM; Li Y; Guest JS
    Environ Sci Technol; 2021 Sep; 55(18):12574-12584. PubMed ID: 34478624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: Bio-char and post HTL wastewater utilization studies.
    Arun J; Varshini P; Prithvinath PK; Priyadarshini V; Gopinath KP
    Bioresour Technol; 2018 Aug; 261():182-187. PubMed ID: 29660659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process.
    Cavali M; Libardi Junior N; de Sena JD; Woiciechowski AL; Soccol CR; Belli Filho P; Bayard R; Benbelkacem H; de Castilhos Junior AB
    Sci Total Environ; 2023 Jan; 857(Pt 3):159627. PubMed ID: 36280070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges in microalgal biofuel production: A perspective on techno economic feasibility under biorefinery stratagem.
    Venkata Subhash G; Rajvanshi M; Raja Krishna Kumar G; Shankar Sagaram U; Prasad V; Govindachary S; Dasgupta S
    Bioresour Technol; 2022 Jan; 343():126155. PubMed ID: 34673195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.