These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 33113708)
1. Groundwater recharge and water table response to changing conditions for aquifers at different physiography: The case of a semi-humid river catchment, northwestern highlands of Ethiopia. Yenehun A; Nigate F; Belay AS; Desta MT; Van Camp M; Walraevens K Sci Total Environ; 2020 Dec; 748():142243. PubMed ID: 33113708 [TBL] [Abstract][Full Text] [Related]
2. Assessing the recharge of a coastal aquifer using physical observations, tritium, groundwater chemistry and modelling. Santos IR; Zhang C; Maher DT; Atkins ML; Holland R; Morgenstern U; Li L Sci Total Environ; 2017 Feb; 580():367-379. PubMed ID: 27989474 [TBL] [Abstract][Full Text] [Related]
3. Using 3D geological modelling and geochemical mixing models to characterise alluvial aquifer recharge sources in the upper Condamine River catchment, Queensland, Australia. Martinez JL; Raiber M; Cendón DI Sci Total Environ; 2017 Jan; 574():1-18. PubMed ID: 27621088 [TBL] [Abstract][Full Text] [Related]
4. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers. Rango T; Vengosh A; Dwyer G; Bianchini G Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878 [TBL] [Abstract][Full Text] [Related]
5. Recognition of Regional Water Table Patterns for Estimating Recharge Rates in Shallow Aquifers. Gilmore TE; Zlotnik V; Johnson M Ground Water; 2019 May; 57(3):443-454. PubMed ID: 29984821 [TBL] [Abstract][Full Text] [Related]
6. Shallow urban aquifers under hyper-recharge equatorial conditions and strong anthropogenic constrains. Implications in terms of groundwater resources potential and integrated water resources management strategies. Nlend B; Celle-Jeanton H; Huneau F; Garel E; Boum-Nkot SN; Etame J Sci Total Environ; 2021 Feb; 757():143887. PubMed ID: 33310570 [TBL] [Abstract][Full Text] [Related]
7. Groundwater recharge and hydrodynamics of complex volcanic aquifers with a shallow saline lake: Laguna Tuyajto, Andean Cordillera of northern Chile. Urrutia J; Herrera C; Custodio E; Jódar J; Medina A Sci Total Environ; 2019 Dec; 697():134116. PubMed ID: 32380610 [TBL] [Abstract][Full Text] [Related]
8. Isotope investigation on groundwater recharge and dynamics in shallow and deep alluvial aquifers of southwest Punjab. Keesari T; Sharma DA; Rishi MS; Pant D; Mohokar HV; Jaryal AK; Sinha UK Appl Radiat Isot; 2017 Nov; 129():163-170. PubMed ID: 28865336 [TBL] [Abstract][Full Text] [Related]
9. Multiparameter daily time-series analysis to groundwater recharge assessment in a caldera aquifer: Roccamonfina Volcano, Italy. Viaroli S; Di Curzio D; Lepore D; Mazza R Sci Total Environ; 2019 Aug; 676():501-513. PubMed ID: 31051360 [TBL] [Abstract][Full Text] [Related]
10. Recharge and residence times of groundwater in hyper arid areas: The confined aquifer of Calama, Loa River Basin, Atacama Desert, Chile. Herrera C; Godfrey L; Urrutia J; Custodio E; Jordan T; Jódar J; Delgado K; Barrenechea F Sci Total Environ; 2021 Jan; 752():141847. PubMed ID: 33207522 [TBL] [Abstract][Full Text] [Related]
11. Estimating Groundwater Mounding in Sloping Aquifers for Managed Aquifer Recharge. Zlotnik VA; Kacimov A; Al-Maktoumi A Ground Water; 2017 Nov; 55(6):797-810. PubMed ID: 28464226 [TBL] [Abstract][Full Text] [Related]
12. Deep rooted apple trees decrease groundwater recharge in the highland region of the Loess Plateau, China. Zhang Z; Li M; Si B; Feng H Sci Total Environ; 2018 May; 622-623():584-593. PubMed ID: 29223082 [TBL] [Abstract][Full Text] [Related]
13. A study on the role of hydrogeology on the distribution of uranium in alluvial aquifers of northwest India. Sharma DA; Keesari T; Rishi MS; Pant D Environ Monit Assess; 2018 Nov; 190(12):746. PubMed ID: 30474744 [TBL] [Abstract][Full Text] [Related]
14. Groundwater arsenic content in quaternary aquifers of the Red River delta, Vietnam, controlled by the hydrogeological processes. Kazmierczak J; Dang TT; Jakobsen R; Hoang HV; Larsen F; Sø HU; Pham NQ; Postma D J Hydrol (Amst); 2022 Jun; 609():127778. PubMed ID: 35711240 [TBL] [Abstract][Full Text] [Related]
15. Estimation of groundwater recharge variability using a GIS-based distributed water balance model in Makutupora basin, Tanzania. Kisiki CP; Ayenew T; Mjemah IC Heliyon; 2023 Apr; 9(4):e15117. PubMed ID: 37151620 [TBL] [Abstract][Full Text] [Related]
16. Regional groundwater flow system characterization of volcanic aquifers in upper Awash using multiple approaches, central Ethiopia. Hailu K; Birhanu B; Azagegn T; Kebede S Isotopes Environ Health Stud; 2023 Jun; 59(3):269-289. PubMed ID: 37327136 [No Abstract] [Full Text] [Related]
17. Integrating soil water and tracer balances, numerical modelling and GIS tools to estimate regional groundwater recharge: Application to the Alcadozo Aquifer System (SE Spain). Hornero J; Manzano M; Ortega L; Custodio E Sci Total Environ; 2016 Oct; 568():415-432. PubMed ID: 27310533 [TBL] [Abstract][Full Text] [Related]
18. Comprehending the groundwater recharge of a coastal city in humid tropical setting using stable isotopes. Jesiya NP; Gopinath G; Resmi TR J Environ Manage; 2021 Jun; 287():112260. PubMed ID: 33714731 [TBL] [Abstract][Full Text] [Related]
19. Proxy modeling approach to evaluate groundwater recharge potentiality zones in the data scarce area of upper Blue Nile Basin, Ethiopia. Tegegne AM; Lohani TK; Eshete AA Environ Monit Assess; 2023 May; 195(6):726. PubMed ID: 37227530 [TBL] [Abstract][Full Text] [Related]
20. Groundwater flow in a relatively old oceanic volcanic island: the Betancuria area, Fuerteventura Island, Canary Islands, Spain. Herrera C; Custodio E Sci Total Environ; 2014 Oct; 496():531-550. PubMed ID: 25108255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]