BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 33113912)

  • 1. A Toxicity Prediction Tool for Potential Agonist/Antagonist Activities in Molecular Initiating Events Based on Chemical Structures.
    Kurosaki K; Wu R; Uesawa Y
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33113912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Image-Based Prediction Models of Nuclear Receptor Agonists and Antagonists Using the DeepSnap-Deep Learning Approach with the Tox21 10K Library.
    Matsuzaka Y; Uesawa Y
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32549344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Silico Molecular Docking and In Vivo Validation with
    Jeong J; Kim H; Choi J
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30857347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning driven QSAR model for environmental toxicology: Effects of endocrine disrupting chemicals on human health.
    Heo S; Safder U; Yoo C
    Environ Pollut; 2019 Oct; 253():29-38. PubMed ID: 31302400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction Model with High-Performance Constitutive Androstane Receptor (CAR) Using DeepSnap-Deep Learning Approach from the Tox21 10K Compound Library.
    Matsuzaka Y; Uesawa Y
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31574921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive modeling of estrogen receptor agonism, antagonism, and binding activities using machine- and deep-learning approaches.
    Ciallella HL; Russo DP; Aleksunes LM; Grimm FA; Zhu H
    Lab Invest; 2021 Apr; 101(4):490-502. PubMed ID: 32778734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of molecular structures, endpoints' values, and predictivity parameters in QSAR research: QSAR analysis of a series of estrogen receptor binders.
    Li J; Gramatica P
    Mol Divers; 2010 Nov; 14(4):687-96. PubMed ID: 19921452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction Models for Agonists and Antagonists of Molecular Initiation Events for Toxicity Pathways Using an Improved Deep-Learning-Based Quantitative Structure-Activity Relationship System.
    Matsuzaka Y; Totoki S; Handa K; Shiota T; Kurosaki K; Uesawa Y
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods.
    Zang Q; Rotroff DM; Judson RS
    J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The applications of machine learning algorithms in the modeling of estrogen-like chemicals.
    Liu H; Yao X; Gramatica P
    Comb Chem High Throughput Screen; 2009 Jun; 12(5):490-6. PubMed ID: 19519328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of active and inactive agonists/antagonists of estrogen receptor based on Tox21 10K compound library: Binomial analysis and structure alert.
    Wang J; Huang Y; Wang S; Yang Y; He J; Li C; Zhao YH; Martyniuk CJ
    Ecotoxicol Environ Saf; 2021 May; 214():112114. PubMed ID: 33711575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning models for predicting endocrine disruption potential of environmental chemicals.
    Chierici M; Giulini M; Bussola N; Jurman G; Furlanello C
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):237-251. PubMed ID: 30628533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpretable machine learning for the identification of estrogen receptor agonists, antagonists, and binders.
    Piir G; Sild S; Maran U
    Chemosphere; 2024 Jan; 347():140671. PubMed ID: 37951393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Endocrine Disruption Using Conformal Prediction - A Prioritization Strategy to Identify Hazardous Chemicals with Confidence.
    Sapounidou M; Norinder U; Andersson PL
    Chem Res Toxicol; 2023 Jan; 36(1):53-65. PubMed ID: 36534483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecotoxicological QSAR modeling of endocrine disruptor chemicals.
    Khan K; Roy K; Benfenati E
    J Hazard Mater; 2019 May; 369():707-718. PubMed ID: 30831523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EDC-Predictor: A Novel Strategy for Prediction of Endocrine-Disrupting Chemicals by Integrating Pharmacological and Toxicological Profiles.
    Yu Z; Wu Z; Zhou M; Cao K; Li W; Liu G; Tang Y
    Environ Sci Technol; 2023 Nov; 57(46):18013-18025. PubMed ID: 37053516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing QSAR Models with Defined Applicability Domains on PPARγ Binding Affinity Using Large Data Sets and Machine Learning Algorithms.
    Wang Z; Chen J; Hong H
    Environ Sci Technol; 2021 May; 55(10):6857-6866. PubMed ID: 33914508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EDCs DataBank: 3D-Structure database of endocrine disrupting chemicals.
    Montes-Grajales D; Olivero-Verbel J
    Toxicology; 2015 Jan; 327():87-94. PubMed ID: 25451822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ANN and Bayesian classification models for virtual screening of endocrine-disrupting chemicals.
    Nowicki P; Klos J; Kokot Z
    Comb Chem High Throughput Screen; 2014; 17(5):407-16. PubMed ID: 24547995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Deep Learning-Based Quantitative Structure-Activity Relationship System Construct Prediction Model of Agonist and Antagonist with High Performance.
    Matsuzaka Y; Uesawa Y
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.