These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 3311410)

  • 1. Changes in autorhythmic heart frequency elicited by redox agents.
    Wittmann I; Puppi A; Dely M
    Chem Biol Interact; 1987; 63(2):115-25. PubMed ID: 3311410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox agents modulate a(K+)0 changes evoked by acetylcholine and adrenaline in frog heart.
    Puppi A; Wittmann I; Dely M
    Acta Physiol Hung; 1990; 76(1):61-9. PubMed ID: 2088012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between the tissue redox state potential and dak/dt changes of [K+]0 activity during k-strophantoside or acetylcholine induced contractures.
    Wittmann I; Puppi A; Dely M
    Acta Physiol Acad Sci Hung; 1982; 60(4):233-6. PubMed ID: 6985315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse modulation of extracellular Na+- and K+-activities by ascorbate or methylene blue.
    Puppi A; Wittmann I; Dely M
    Gen Physiol Biophys; 1986 Apr; 5(2):187-91. PubMed ID: 3025056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox state potential influences (+/-) delta [Na+]o activity values during acetylcholine contractures of frog skeletal muscles.
    Puppi A; Wittmann I; Dely M
    Gen Pharmacol; 1982; 13(4):321-5. PubMed ID: 6751931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of methylene blue and ascorbate on transmembrane potential in frog skeletal muscle.
    Nánási PP; Dely M
    Gen Pharmacol; 1995 Oct; 26(6):1307-11. PubMed ID: 7590124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of redox agents on the non-electrolyte isotonic concentrations and on the equivalent pore radius of skeletal muscles of the frog.
    Dely M; Puppi A; Bédy E; Práger P
    Acta Physiol Hung; 1985; 65(2):103-8. PubMed ID: 3157293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlations between redox-state potential changes in different tissues and the heart frequency in vivo.
    Szabó IT; Puppi A; Gábriel M; Dely M
    Gen Physiol Biophys; 1986 Aug; 5(4):433-43. PubMed ID: 3770462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlations between the tissue redox-state and K(+)-contractures.
    Puppi A; Szekeres S; Dely M
    Acta Physiol Hung; 1990; 75(3):253-9. PubMed ID: 2144094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between the redox state of the biophase and the effect of acetylcholine on the activity of (Na+ / K+) ATP-ase in Rana esculenta.
    Puppi A; Szalay L; Dely M
    Comp Biochem Physiol C Comp Pharmacol; 1975 Jan; 50(1):75-9. PubMed ID: 240628
    [No Abstract]   [Full Text] [Related]  

  • 11. Opposite effects of methylene blue and ascorbate on lipid peroxidation in muscles. Correlation with the redox state. I. Experiments on satisfied frogs.
    Dely M; Zsoldos T; Puppi A; Tigyi A
    Chem Biol Interact; 1990; 75(2):213-23. PubMed ID: 2164455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Ci- ions in the neurotransmitter and redox regulation of ion movements through isolated frog skin.
    Puppi A; Dely M
    Comp Biochem Physiol C Comp Pharmacol; 1978; 59(2):177-81. PubMed ID: 25743
    [No Abstract]   [Full Text] [Related]  

  • 13. Evidence for the existence of three types of potassium channels in the frog Ranvier node membrane.
    Dubois JM
    J Physiol; 1981 Sep; 318():297-316. PubMed ID: 6275068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A voltage-dependent gate in series with the inwardly rectifying potassium channel in frog striated muscle.
    Mancinelli E; Peres A
    J Physiol; 1979 Aug; 293():301-18. PubMed ID: 315463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium-potassium pump inhibitors increase neuronal excitability in the rat hippocampal slice: role of a Ca2+-dependent conductance.
    McCarren M; Alger BE
    J Neurophysiol; 1987 Feb; 57(2):496-509. PubMed ID: 2435860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of oxidant stress in cultured endothelial cells by methylene blue: protective effects of glucose and ascorbic acid.
    May JM; Qu ZC; Whitesell RR
    Biochem Pharmacol; 2003 Sep; 66(5):777-84. PubMed ID: 12948858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An all-ornone response in thh release of potassium by yeast cells with methylene blue and other basic redox dyes.
    PASSOW H; ROTHSTEIN A; LOEWENSTEIN B
    J Gen Physiol; 1959 Sep; 43(1):97-107. PubMed ID: 14430753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single potassium channel conductance in the frog node of Ranvier.
    de Bruin G; Guy I; Van den Berg RJ
    Biophys J; 1984 Apr; 45(4):855-8. PubMed ID: 6326879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of transient Na+ conductance by intra- and extracellular K+ in the human delayed rectifier K+ channel Kv1.5.
    Wang Z; Zhang X; Fedida D
    J Physiol; 2000 Mar; 523 Pt 3(Pt 3):575-91. PubMed ID: 10718739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous changes in the equilibrium potential and potassium conductance in voltage clamped Ranvier node in the frog.
    Dubois JM
    J Physiol; 1981 Sep; 318():279-95. PubMed ID: 6275067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.