These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3311420)

  • 21. Characterisation of fluorescent Schiff bases formed during oxidation of pig myofibrils.
    Chelh I; Gatellier P; Santé-Lhoutellier V
    Meat Sci; 2007 Jun; 76(2):210-5. PubMed ID: 22064288
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescent lipid-peroxidation products in synovial fluid.
    Lunec J; Dormandy TL
    Clin Sci (Lond); 1979 Jan; 56(1):53-9. PubMed ID: 477183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectrofluorescent detection of in vivo red cell lipid peroxidation in patients treated with diaminodiphenylsulfone.
    Goldstein BD; McDonagh EM
    J Clin Invest; 1976 May; 57(5):1302-7. PubMed ID: 1262473
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aldehydes in cigarette smoke react with the lipid peroxidation product malonaldehyde to form fluorescent protein adducts on lysines.
    Freeman TL; Haver A; Duryee MJ; Tuma DJ; Klassen LW; Hamel FG; White RL; Rennard SI; Thiele GM
    Chem Res Toxicol; 2005 May; 18(5):817-24. PubMed ID: 15892575
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Substituted 2-hydroxy-1,2-dihydropyrrol-3-ones: fluorescent markers pertaining to oxidative stress and aging.
    Chen P; Wiesler D; Chmelik J; Novotny M
    Chem Res Toxicol; 1996 Sep; 9(6):970-9. PubMed ID: 8870984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Blue fluorescence generated during lipid oxidation of rat liver microsomes cannot be derived from malonaldehyde but can be from other aldehyde species.
    Inoue T; Kikugawa K
    Biol Pharm Bull; 1998 Apr; 21(4):319-25. PubMed ID: 9586565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of malonaldehyde in oxidized lipids by the Hantzsch fluorometric method.
    Kikugawa K; Kato T; Iwata A
    Anal Biochem; 1988 Nov; 174(2):512-21. PubMed ID: 3239753
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immunological relevance of malonic dialdehyde. I. Preparation of Schiff's bases from lysozyme or polylysine reacted with malonic dialdehyde.
    Kergonou JF; Marais D; Lafite C; Pennacino I; Ducousso R
    Biochimie; 1987; 69(11-12):1153-9. PubMed ID: 3129019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation of dityrosine and other fluorescent amino acids by reaction of amino acids with lipid hydroperoxides.
    Kikugawa K; Kato T; Hayasaka A
    Lipids; 1991 Nov; 26(11):922-9. PubMed ID: 1805097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amino Acid Degradations Produced by Lipid Oxidation Products.
    Hidalgo FJ; Zamora R
    Crit Rev Food Sci Nutr; 2016 Jun; 56(8):1242-52. PubMed ID: 25748518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential thiobarbituric acid-reactive substances in peroxidized lipids.
    Kosugi H; Kikugawa K
    Free Radic Biol Med; 1989; 7(2):205-7. PubMed ID: 2806944
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of reaction products formed in a model reaction between pentanal and lysine-containing oligopeptides.
    Dalsgaard TK; Nielsen JH; Larsen LB
    J Agric Food Chem; 2006 Aug; 54(17):6367-73. PubMed ID: 16910732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detoxification of secondary products of lipid peroxidation in the cytosol of a mouse fibroblast cell line.
    Brophy PM; Barrett J
    Biochem Cell Biol; 1990 Nov; 68(11):1288-91. PubMed ID: 2275805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of cross-links and fluorescence in polylysine, soluble proteins and membrane proteins by reaction with 1-butanal.
    Kikugawa K; Iwata A; Beppu M
    Chem Pharm Bull (Tokyo); 1988 Feb; 36(2):685-92. PubMed ID: 3409377
    [No Abstract]   [Full Text] [Related]  

  • 35. Reaction of malonaldehyde with nucleic acid. III. Studies of the fluorescent substances released by enzymatic digestion of nucleic acids modified with malonaldehyde.
    Seto H; Seto T; Takesue T; Ikemura T
    Chem Pharm Bull (Tokyo); 1986 Dec; 34(12):5079-85. PubMed ID: 2436822
    [No Abstract]   [Full Text] [Related]  

  • 36. Reaction of acetaldehyde with proteins: formation of stable fluorescent adducts.
    Hoffmann T; Meyer RJ; Sorrell MF; Tuma DJ
    Alcohol Clin Exp Res; 1993 Feb; 17(1):69-74. PubMed ID: 8452210
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lipid peroxidation: mechanisms, inhibition, and biological effects.
    Niki E; Yoshida Y; Saito Y; Noguchi N
    Biochem Biophys Res Commun; 2005 Dec; 338(1):668-76. PubMed ID: 16126168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crosslinking of aminophospholipids in cellular membranes of lens by oxidative stress in vitro.
    Bhuyan DK; Master RW; Bhuyan KC
    Biochim Biophys Acta; 1996 Nov; 1285(1):21-8. PubMed ID: 8948471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescence formation from the interaction of DNA with lipid oxidation degradation products.
    Frankel EN; Neff WE; Brooks DD; Fujimoto K
    Biochim Biophys Acta; 1987 Jun; 919(3):239-44. PubMed ID: 3593747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The formation of fluorescent substance by lipid peroxides. III].
    Yoden K; Matsuzaki R; Iio T; Tabata T
    Yakugaku Zasshi; 1982 Aug; 102(8):768-73. PubMed ID: 7175695
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.