These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 33114218)

  • 21. Preparation and Characterization of Polypropylene/Carbon Nanotubes (PP/CNTs) Nanocomposites as Potential Strain Gauges for Structural Health Monitoring.
    Coppola B; Di Maio L; Incarnato L; Tulliani JM
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32344574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Key Role of the Dispersion of Carbon Nanotubes (CNTs) within Epoxy Networks on their Ability to Release.
    Pras M; Gérard JF; Golanski L; Quintard G; Duchet-Rumeau J
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33138127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Effect of Agglomeration on the Electrical and Mechanical Properties of Polymer Matrix Nanocomposites Reinforced with Carbon Nanotubes.
    Tamayo-Vegas S; Muhsan A; Liu C; Tarfaoui M; Lafdi K
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35567011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ferric Ions Crosslinked Epoxidized Natural Rubber Filled with Carbon Nanotubes and Conductive Carbon Black Hybrid Fillers.
    Damampai K; Pichaiyut S; Stöckelhuber KW; Das A; Nakason C
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297970
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved Weathering Performance of Poly(Lactic Acid) through Carbon Nanotubes Addition: Thermal, Microstructural, and Nanomechanical Analyses.
    Vu T; Nikaeen P; Chirdon W; Khattab A; Depan D
    Biomimetics (Basel); 2020 Nov; 5(4):. PubMed ID: 33212926
    [TBL] [Abstract][Full Text] [Related]  

  • 26. More dominant shear flow effect assisted by added carbon nanotubes on crystallization kinetics of isotactic polypropylene in nanocomposites.
    Wang J; Yang J; Deng L; Fang H; Zhang Y; Wang Z
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1364-75. PubMed ID: 25569561
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Waste to Value-Added Product: Developing Electrically Conductive Nanocomposites Using a Non-Recyclable Plastic Waste Containing Vulcanized Rubber.
    Ahmadian Hoseini AH; Erfanian E; Kamkar M; Sundararaj U; Liu J; Arjmand M
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372031
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of the Nanotube Radius and the Volume Fraction on the Mechanical Properties of Carbon Nanotube-Reinforced Aluminum Metal Matrix Composites.
    Suk ME
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34203387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recyclable and electrically conducting carbon nanotube composite films.
    Zou G; Jain M; Yang H; Zhang Y; Williams D; Jia Q
    Nanoscale; 2010 Mar; 2(3):418-22. PubMed ID: 20644826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon nanotube release from polymers into a food simulant.
    Xia Y; Uysal Unalan I; Rubino M; Auras R
    Environ Pollut; 2017 Oct; 229():818-826. PubMed ID: 28779898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Defect-free surface modification methods for solubility-tunable carbon nanotubes.
    Lee HD; Yoo BM; Lee TH; Park HB
    J Colloid Interface Sci; 2018 Jan; 509():307-317. PubMed ID: 28918373
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vacuum Casting and Mechanical Characterization of Nanocomposites from Epoxy and Oxidized Multi-Walled Carbon Nanotubes.
    Singer G; Siedlaczek P; Sinn G; Kirner PH; Schuller R; Wan-Wendner R; Lichtenegger HC
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30708980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites.
    Che BD; Nguyen BQ; Nguyen LT; Nguyen HT; Nguyen VQ; Van Le T; Nguyen NH
    Chem Cent J; 2015; 9():10. PubMed ID: 25763100
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biocompatible Nanocomposites Based on Poly(styrene-
    Rezvova MA; Yuzhalin AE; Glushkova TV; Makarevich MI; Nikishau PA; Kostjuk SV; Klyshnikov KY; Matveeva VG; Khanova MY; Ovcharenko EA
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32971801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparing Multi-Walled Carbon Nanotubes and Halloysite Nanotubes as Reinforcements in EVA Nanocomposites.
    Zubkiewicz A; Szymczyk A; Franciszczak P; Kochmanska A; Janowska I; Paszkiewicz S
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chirality-Dependent Mechanical Properties of Bundles and Thin Films Composed of Covalently Cross-Linked Carbon Nanotubes.
    Kayang KW; Banna AH; Volkov AN
    Langmuir; 2022 Feb; 38(6):1977-1994. PubMed ID: 35104409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical and electrical properties of carbon nanotube/Cu nanocomposites by molecular-level mixing and controlled oxidation process.
    Lim BK; Mo CB; Nam DH; Hong SH
    J Nanosci Nanotechnol; 2010 Jan; 10(1):78-84. PubMed ID: 20352814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular mobility and crystallization of renewable poly(ethylene furanoate)
    Kourtidou D; Klonos PA; Papadopoulos L; Kyritsis A; Bikiaris DN; Chrissafis K
    Soft Matter; 2021 Jun; 17(23):5815-5828. PubMed ID: 34037062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Macroscopic fibers of well-aligned carbon nanotubes by wet spinning.
    Zhang S; Koziol KK; Kinloch IA; Windle AH
    Small; 2008 Aug; 4(8):1217-22. PubMed ID: 18666161
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Green preparation and characterization of graphene oxide/carbon nanotubes-loaded carboxymethyl cellulose nanocomposites.
    Son YR; Park SJ
    Sci Rep; 2018 Dec; 8(1):17601. PubMed ID: 30514859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.