BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 33114220)

  • 1. Plant-Derived Natural Compounds in Genetic Vaccination and Therapy for HPV-Associated Cancers.
    Franconi R; Massa S; Paolini F; Vici P; Venuti A
    Cancers (Basel); 2020 Oct; 12(11):. PubMed ID: 33114220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunotherapy of HPV-associated cancer: DNA/plant-derived vaccines and new orthotopic mouse models.
    Venuti A; Curzio G; Mariani L; Paolini F
    Cancer Immunol Immunother; 2015 Oct; 64(10):1329-38. PubMed ID: 26138695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunotherapy for human papillomavirus-associated disease and cervical cancer: review of clinical and translational research.
    Lee SJ; Yang A; Wu TC; Hung CF
    J Gynecol Oncol; 2016 Sep; 27(5):e51. PubMed ID: 27329199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioproduction of a Therapeutic Vaccine Against Human Papillomavirus in Tomato Hairy Root Cultures.
    Massa S; Paolini F; Marino C; Franconi R; Venuti A
    Front Plant Sci; 2019; 10():452. PubMed ID: 31031788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic DNA Vaccines for Human Papillomavirus and Associated Diseases.
    Cheng MA; Farmer E; Huang C; Lin J; Hung CF; Wu TC
    Hum Gene Ther; 2018 Sep; 29(9):971-996. PubMed ID: 29316817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunomodulatory effects of IP-10 chemokine along with PEI600-Tat delivery system in DNA vaccination against HPV infections.
    Mohit E; Bolhassani A; Zahedifard F; Seyed N; Eslamifar A; Taghikhani M; Samimi-Rad K; Rafati S
    Mol Immunol; 2013 Jan; 53(1-2):149-60. PubMed ID: 22926003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical perspectives on the role of the human papillomavirus vaccine in the prevention of cancer.
    Julius JM; Ramondeta L; Tipton KA; Lal LS; Schneider K; Smith JA
    Pharmacotherapy; 2011 Mar; 31(3):280-97. PubMed ID: 21361739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Papillomavirus Infection and Vaccination.
    Valentino K; Poronsky CB
    J Pediatr Nurs; 2016; 31(2):e155-66. PubMed ID: 26586310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preclinical study of safety and immunogenicity of combined rubella and human papillomavirus vaccines: Towards enhancing vaccination uptake rates in developing countries.
    Gohar A; Abdeltawab NF; Shehata N; Amin MA
    Papillomavirus Res; 2019 Dec; 8():100172. PubMed ID: 31185296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress in prophylactic human papillomavirus (HPV) vaccination in 2016: A literature review.
    Maver PJ; Poljak M
    Vaccine; 2018 Aug; 36(36):5416-5423. PubMed ID: 28801154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cost-effectiveness analysis for Pap smear screening and human papillomavirus DNA testing and vaccination.
    Chen MK; Hung HF; Duffy S; Yen AM; Chen HH
    J Eval Clin Pract; 2011 Dec; 17(6):1050-8. PubMed ID: 21679279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of anti HPV vaccination on cervical cancer incidence and HPV induced cervical lesions: consequences for clinical management.
    Brinkman JA; Caffrey AS; Muderspach LI; Roman LD; Kast WM
    Eur J Gynaecol Oncol; 2005; 26(2):129-42. PubMed ID: 15857016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of HPV DNA vaccines employing intracellular targeting strategies.
    Kim JW; Hung CF; Juang J; He L; Kim TW; Armstrong DK; Pai SI; Chen PJ; Lin CT; Boyd DA; Wu TC
    Gene Ther; 2004 Jun; 11(12):1011-8. PubMed ID: 14985791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mucosal HPV E6/E7 Peptide Vaccination in Combination with Immune Checkpoint Modulation Induces Regression of HPV
    Dorta-Estremera S; Chin RL; Sierra G; Nicholas C; Yanamandra AV; Nookala SMK; Yang G; Singh S; Curran MA; Sastry KJ
    Cancer Res; 2018 Sep; 78(18):5327-5339. PubMed ID: 30054333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cost-effectiveness analysis of a quadrivalent human papilloma virus vaccine in Mexico.
    Reynales-Shigematsu LM; Rodrigues ER; Lazcano-Ponce E
    Arch Med Res; 2009 Aug; 40(6):503-13. PubMed ID: 19853192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fusion of HPV L1 into Shigella surface IcsA: a new approach in developing live attenuated Shigella-HPV vaccine.
    Xu D; Wang D; Yang X; Cao M; Yu J; Wang Y
    Antiviral Res; 2014 Feb; 102():61-9. PubMed ID: 24333518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incremental cost-effectiveness evaluation of vaccinating girls against cervical cancer pre- and post-sexual debut in Belgium.
    Demarteau N; Van Kriekinge G; Simon P
    Vaccine; 2013 Aug; 31(37):3962-71. PubMed ID: 23777952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a DNA vaccine targeting human papillomavirus type 16 oncoprotein E6.
    Peng S; Ji H; Trimble C; He L; Tsai YC; Yeatermeyer J; Boyd DA; Hung CF; Wu TC
    J Virol; 2004 Aug; 78(16):8468-76. PubMed ID: 15280455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On surmounting the barriers to HPV vaccination: we can do better.
    Attia AC; Wolf J; Núñez AE
    Ann Med; 2018 May; 50(3):209-225. PubMed ID: 29316825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cost-effectiveness analysis of human papillomavirus vaccination in South Africa accounting for human immunodeficiency virus prevalence.
    Li X; Stander MP; Van Kriekinge G; Demarteau N
    BMC Infect Dis; 2015 Dec; 15():566. PubMed ID: 26652918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.