These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33114802)

  • 1. Dissipative bosonic squeezing via frequency modulation and its application in optomechanics.
    Wang DY; Bai CH; Liu S; Zhang S; Wang HF
    Opt Express; 2020 Sep; 28(20):28942-28953. PubMed ID: 33114802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of steady-state bosonic squeezing and entanglement in a dissipative optomechanical system.
    Liao CG; Xie H; Shang X; Chen ZH; Lin XM
    Opt Express; 2018 May; 26(11):13783-13799. PubMed ID: 29877426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity.
    Wang DY; Bai CH; Wang HF; Zhu AD; Zhang S
    Sci Rep; 2016 Apr; 6():24421. PubMed ID: 27091072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photon-assisted entanglement and squeezing generation and decoherence suppression via a quadratic optomechanical coupling.
    Zhang Z; Wang X
    Opt Express; 2020 Feb; 28(3):2732-2743. PubMed ID: 32121955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optomechanical squeezing with strong harmonic mechanical driving.
    Lin XY; Ye GZ; Liu Y; Jiang YK; Wu H
    Opt Express; 2024 Mar; 32(6):8847-8861. PubMed ID: 38571132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong vacuum squeezing from bichromatically driven Kerrlike cavities: from optomechanics to superconducting circuits.
    Garcés R; de Valcárcel GJ
    Sci Rep; 2016 Feb; 6():21964. PubMed ID: 26916946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity.
    Singh V; Bosman SJ; Schneider BH; Blanter YM; Castellanos-Gomez A; Steele GA
    Nat Nanotechnol; 2014 Oct; 9(10):820-4. PubMed ID: 25150717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of mechanical squeezing and entanglement via mechanical modulations.
    Gu WJ; Yi Z; Sun LH; Yan Y
    Opt Express; 2018 Nov; 26(23):30773-30785. PubMed ID: 30469969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady-state mechanical squeezing in a double-cavity optomechanical system.
    Wang DY; Bai CH; Wang HF; Zhu AD; Zhang S
    Sci Rep; 2016 Dec; 6():38559. PubMed ID: 27917939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quadrature squeezing of a higher-order sideband spectrum in cavity optomechanics.
    Liu S; Yang WX; Zhu Z; Shui T; Li L
    Opt Lett; 2018 Jan; 43(1):9-12. PubMed ID: 29328228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable nonreciprocal phonon laser in a hybrid photonic molecule based on directional quantum squeezing.
    Zhou YR; Zhang QF; Liu FF; Han YH; Gao YP; Fan L; Zhang R; Cao C
    Opt Express; 2024 Jan; 32(2):2786-2803. PubMed ID: 38297799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large mechanical squeezing beyond 3dB of hybrid atom-optomechanical systems in a highly unresolved sideband regime.
    Zhang JS; Chen AX
    Opt Express; 2020 Apr; 28(9):12827-12836. PubMed ID: 32403771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ground-State Cooling and High-Fidelity Quantum Transduction via Parametrically Driven Bad-Cavity Optomechanics.
    Lau HK; Clerk AA
    Phys Rev Lett; 2020 Mar; 124(10):103602. PubMed ID: 32216414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large and robust mechanical squeezing of optomechanical systems in a highly unresolved sideband regime via Duffing nonlinearity and intracavity squeezed light.
    Zhang JS; Chen AX
    Opt Express; 2020 Nov; 28(24):36620-36631. PubMed ID: 33379752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooling of mechanical resonator in a hybrid intracavity squeezing optomechanical system.
    Liao Q; Zhou L; Wang X; Liu Y
    Opt Express; 2022 Oct; 30(21):38776-38788. PubMed ID: 36258435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Nondemolition Measurement of a Quantum Squeezed State Beyond the 3 dB Limit.
    Lei CU; Weinstein AJ; Suh J; Wollman EE; Kronwald A; Marquardt F; Clerk AA; Schwab KC
    Phys Rev Lett; 2016 Sep; 117(10):100801. PubMed ID: 27636463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum squeezing in a modulated optomechanical system.
    Zhang ZC; Wang YP; Yu YF; Zhang ZM
    Opt Express; 2018 Apr; 26(9):11915-11927. PubMed ID: 29716108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heisenberg-Limited Spin Squeezing via Bosonic Parametric Driving.
    Groszkowski P; Lau HK; Leroux C; Govia LCG; Clerk AA
    Phys Rev Lett; 2020 Nov; 125(20):203601. PubMed ID: 33258660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement-Induced Macroscopic Superposition States in Cavity Optomechanics.
    Hoff UB; Kollath-Bönig J; Neergaard-Nielsen JS; Andersen UL
    Phys Rev Lett; 2016 Sep; 117(14):143601. PubMed ID: 27740796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical squeezing in an active-passive-coupled double-cavity optomechanical system via pump modulation.
    Guo Q; Ren XQ; Bai CH; Zhang Y; Li G; Zhang T
    Opt Express; 2022 Dec; 30(26):47070-47081. PubMed ID: 36558644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.