These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33114837)

  • 41. Stable, Flexible, and High-Performance SERS Chip Enabled by a Ternary Film-Packaged Plasmonic Nanoparticle Array.
    Wang K; Sun DW; Pu H; Wei Q; Huang L
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29177-29186. PubMed ID: 31317741
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Target-Triggered Catalytic Hairpin Assembly-Induced Core-Satellite Nanostructures for High-Sensitive "Off-to-On" SERS Detection of Intracellular MicroRNA.
    Liu C; Chen C; Li S; Dong H; Dai W; Xu T; Liu Y; Yang F; Zhang X
    Anal Chem; 2018 Sep; 90(17):10591-10599. PubMed ID: 30058321
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DNA-mediated wirelike clusters of silver nanoparticles: an ultrasensitive SERS substrate.
    Majumdar D; Singha A; Mondal PK; Kundu S
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7798-807. PubMed ID: 23895297
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ag shell-Au satellite hetero-nanostructure for ultra-sensitive, reproducible, and homogeneous NIR SERS activity.
    Chang H; Kang H; Yang JK; Jo A; Lee HY; Lee YS; Jeong DH
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):11859-63. PubMed ID: 25078544
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Facile in Situ Synthesis of Silver Nanoparticles on the Surface of Metal-Organic Framework for Ultrasensitive Surface-Enhanced Raman Scattering Detection of Dopamine.
    Jiang Z; Gao P; Yang L; Huang C; Li Y
    Anal Chem; 2015 Dec; 87(24):12177-82. PubMed ID: 26575213
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering.
    Zhao N; Li H; Xie Y; Feng Z; Wang Z; Yang Z; Yan X; Wang W; Tian C; Yu H
    Electrophoresis; 2019 Dec; 40(23-24):3123-3131. PubMed ID: 31576580
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins.
    Liu Z; Cheng L; Zhang L; Jing C; Shi X; Yang Z; Long Y; Fang J
    Nanoscale; 2014 Mar; 6(5):2567-72. PubMed ID: 24463635
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tip-Selective Growth of Silver on Gold Nanostars for Surface-Enhanced Raman Scattering.
    Zhang W; Liu J; Niu W; Yan H; Lu X; Liu B
    ACS Appl Mater Interfaces; 2018 May; 10(17):14850-14856. PubMed ID: 29569899
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aluminum nanoparticle films with an enhanced hot-spot intensity for high-efficiency SERS.
    Li Z; Li C; Yu J; Li Z; Zhao X; Liu A; Jiang S; Yang C; Zhang C; Man B
    Opt Express; 2020 Mar; 28(7):9174-9185. PubMed ID: 32225529
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analyte Co-localization at Electromagnetic Gap Hot-Spots for Highly Sensitive (Bio)molecular Detection by Plasmon Enhanced Spectroscopies.
    Rastogi R; Arianfard H; Moss D; Juodkazis S; Adam PM; Krishnamoorthy S
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9113-9121. PubMed ID: 33583180
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A chemical route to increase hot spots on silver nanowires for surface-enhanced Raman spectroscopy application.
    Goh MS; Lee YH; Pedireddy S; Phang IY; Tjiu WW; Tan JM; Ling XY
    Langmuir; 2012 Oct; 28(40):14441-9. PubMed ID: 22970778
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Large-Scale Hot Spot Engineering for Quantitative SERS at the Single-Molecule Scale.
    Chen HY; Lin MH; Wang CY; Chang YM; Gwo S
    J Am Chem Soc; 2015 Oct; 137(42):13698-705. PubMed ID: 26469218
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Black silicon SERS substrate: effect of surface morphology on SERS detection and application of single algal cell analysis.
    Deng YL; Juang YJ
    Biosens Bioelectron; 2014 Mar; 53():37-42. PubMed ID: 24121206
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A disposable paper-based hydrophobic substrate for highly sensitive surface-enhanced Raman scattering detection.
    Geng ZQ; Zheng JJ; Li YP; Chen Y; Wang P; Han CQ; Yang GH; Qu LL
    Talanta; 2020 Dec; 220():121340. PubMed ID: 32928387
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plasmonic Au nanostar Raman probes coupling with highly ordered TiO
    Wen S; Su Y; Wu R; Zhou S; Min Q; Fan GC; Jiang LP; Song RB; Zhu JJ
    Biosens Bioelectron; 2018 Oct; 117():260-266. PubMed ID: 29909197
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surface-Enhanced Raman Spectroscopy of Two-Dimensional Tin Diselenide Nanoplates.
    Liu M; Shi Y; Zhang G; Zhang Y; Wu M; Ren J; Man B
    Appl Spectrosc; 2018 Nov; 72(11):1613-1620. PubMed ID: 30063384
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamically Tunable Plasmonic Band for Reversible Colorimetric Sensors and Surface-Enhanced Raman Scattering Effect with Good Sensitivity and Stability.
    Men D; Liu G; Xing C; Zhang H; Xiang J; Sun Y; Hang L
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7494-7503. PubMed ID: 31944661
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates.
    Wang S; Tay LL; Liu H
    Analyst; 2016 Mar; 141(5):1721-33. PubMed ID: 26824092
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Facile synthesis of Fe
    Han D; Li B; Chen Y; Wu T; Kou Y; Xue X; Chen L; Liu Y; Duan Q
    Nanotechnology; 2019 Nov; 30(46):465703. PubMed ID: 31476137
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In situ synthesis of graphene oxide/gold nanocomposites as ultrasensitive surface-enhanced Raman scattering substrates for clenbuterol detection.
    Sun Y; Chen H; Ma P; Li J; Zhang Z; Shi H; Zhang X
    Anal Bioanal Chem; 2020 Jan; 412(1):193-201. PubMed ID: 31760449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.