These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33114879)

  • 1. Aberration-corrected three-dimensional non-inertial scanning for femtosecond lasers.
    Wang Y; Li H; Hu Q; Cheng X; Chen R; Lv X; Zeng S
    Opt Express; 2020 Sep; 28(20):29904-29917. PubMed ID: 33114879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extending the 3D scanning range of DMD-based scanners for femtosecond lasers.
    Wang Y; Li H; Hu Q; Chen R; Lv X; Zeng S
    Opt Lett; 2020 Dec; 45(24):6639-6642. PubMed ID: 33325862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aberration-free 3D imaging via DMD-based two-photon microscopy and sensorless adaptive optics.
    Ren M; Chen J; Chen D; Chen SC
    Opt Lett; 2020 May; 45(9):2656-2659. PubMed ID: 32356846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive optics enables aberration-free single-objective remote focusing for two-photon fluorescence microscopy.
    Yang Y; Chen W; Fan JL; Ji N
    Biomed Opt Express; 2021 Jan; 12(1):354-366. PubMed ID: 33520387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and control of peak intensity distribution at the focus of a spatiotemporally focused femtosecond laser beam.
    He F; Zeng B; Chu W; Ni J; Sugioka K; Cheng Y; Durfee CG
    Opt Express; 2014 Apr; 22(8):9734-48. PubMed ID: 24787858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberration on excitation focal spot caused by oblique interface with refractive indices discontinuous and its correction with pure-phase compensation for laser scanning microscopy.
    Zhu Y; Zhang C; Zhao W; Wang J; Wang K; Bai J
    J Microsc; 2021 Jun; 282(3):239-249. PubMed ID: 33443815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe.
    Hoy CL; Ferhanoğlu O; Yildirim M; Piyawattanametha W; Ra H; Solgaard O; Ben-Yakar A
    Opt Express; 2011 May; 19(11):10536-52. PubMed ID: 21643308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast axial scanning for two-photon microscopy via a digital micromirror device and binary holography.
    Cheng J; Gu C; Zhang D; Wang D; Chen SC
    Opt Lett; 2016 Apr; 41(7):1451-4. PubMed ID: 27192259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aberration Correction to Optimize the Performance of Two-Photon Fluorescence Microscopy Using the Genetic Algorithm.
    Yan W; Huang Y; Wang L; Guo Y; Li J; Zhu Y; Yang Z; Qu J
    Microsc Microanal; 2022 Jan; ():1-7. PubMed ID: 35074025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond laser microstructuring for polymeric lab-on-chips.
    Eaton SM; De Marco C; Martinez-Vazquez R; Ramponi R; Turri S; Cerullo G; Osellame R
    J Biophotonics; 2012 Aug; 5(8-9):687-702. PubMed ID: 22589025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-photon three-dimensional microfabrication through a multimode optical fiber.
    Delrot P; Loterie D; Psaltis D; Moser C
    Opt Express; 2018 Jan; 26(2):1766-1778. PubMed ID: 29402046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive 3D vital imaging and characterization of notochordal cells of the intervertebral disc by femtosecond near-infrared two-photon laser scanning microscopy and spatial-volume rendering.
    Guehring T; Urban JP; Cui Z; Tirlapur UK
    Microsc Res Tech; 2008 Apr; 71(4):298-304. PubMed ID: 18189326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning laser measure of optical quality of the cultured crystalline lens.
    Weerheim JA; Sivak JG
    Ophthalmic Physiol Opt; 1992 Jan; 12(1):72-9. PubMed ID: 1584621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of femtosecond-laser induced nanostructures in optical memory.
    Shimotsuma Y; Sakakura M; Miura K; Qiu J; Kazansky PG; Fujita K; Hirao K
    J Nanosci Nanotechnol; 2007 Jan; 7(1):94-104. PubMed ID: 17455477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High speed wavefront sensorless aberration correction in digital micromirror based confocal microscopy.
    Pozzi P; Wilding D; Soloviev O; Verstraete H; Bliek L; Vdovin G; Verhaegen M
    Opt Express; 2017 Jan; 25(2):949-959. PubMed ID: 28157989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing.
    Wang P; Qi J; Liu Z; Liao Y; Chu W; Cheng Y
    Sci Rep; 2017 Jan; 7():41211. PubMed ID: 28112246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffraction-limited axial scanning in thick biological tissue with an aberration-correcting adaptive lens.
    Philipp K; Lemke F; Scholz S; Wallrabe U; Wapler MC; Koukourakis N; Czarske JW
    Sci Rep; 2019 Jul; 9(1):9532. PubMed ID: 31267005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focussing over the edge: adaptive subsurface laser fabrication up to the sample face.
    Salter PS; Booth MJ
    Opt Express; 2012 Aug; 20(18):19978-89. PubMed ID: 23037050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive optics for direct laser writing with plasma emission aberration sensing.
    Jesacher A; Marshall GD; Wilson T; Booth MJ
    Opt Express; 2010 Jan; 18(2):656-61. PubMed ID: 20173885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DMD-based three-dimensional chromatic confocal microscopy.
    Li S; Liang R
    Appl Opt; 2020 May; 59(14):4349-4356. PubMed ID: 32400411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.