These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33115018)

  • 1. Shot-to-shot 2D IR spectroscopy at 100 kHz using a Yb laser and custom-designed electronics.
    Farrell KM; Ostrander JS; Jones AC; Yakami BR; Dicke SS; Middleton CT; Hamm P; Zanni MT
    Opt Express; 2020 Oct; 28(22):33584-33602. PubMed ID: 33115018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 100 kHz Pulse Shaping 2D-IR Spectrometer Based on Dual Yb:KGW Amplifiers.
    Donaldson PM; Greetham GM; Shaw DJ; Parker AW; Towrie M
    J Phys Chem A; 2018 Jan; 122(3):780-787. PubMed ID: 29250947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breaking Barriers in Ultrafast Spectroscopy and Imaging Using 100 kHz Amplified Yb-Laser Systems.
    Donaldson PM; Greetham GM; Middleton CT; Luther BM; Zanni MT; Hamm P; Krummel AT
    Acc Chem Res; 2023 Aug; 56(15):2062-2071. PubMed ID: 37429010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz.
    Kearns NM; Mehlenbacher RD; Jones AC; Zanni MT
    Opt Express; 2017 Apr; 25(7):7869-7883. PubMed ID: 28380905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2D IR spectroscopy at 100 kHz utilizing a Mid-IR OPCPA laser source.
    Luther BM; Tracy KM; Gerrity M; Brown S; Krummel AT
    Opt Express; 2016 Feb; 24(4):4117-27. PubMed ID: 26907062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-energy, kHz, picosecond hybrid Yb-doped chirped-pulse amplifier.
    Chang CL; Krogen P; Hong KH; Zapata LE; Moses J; Calendron AL; Liang H; Lai CJ; Stein GJ; Keathley PD; Laurent G; Kärtner FX
    Opt Express; 2015 Apr; 23(8):10132-44. PubMed ID: 25969056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump-probe spectroscopy.
    Kanal F; Keiber S; Eck R; Brixner T
    Opt Express; 2014 Jul; 22(14):16965-75. PubMed ID: 25090512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Octave-spanning mid-infrared pulses by plasma generation in air pumped with an Yb:KGW source.
    Huang J; Parobek A; Ganim Z
    Opt Lett; 2016 Nov; 41(21):4855-4858. PubMed ID: 27805634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 100 kHz Time-Resolved Multiple-Probe Femtosecond to Second Infrared Absorption Spectrometer.
    Greetham GM; Donaldson PM; Nation C; Sazanovich IV; Clark IP; Shaw DJ; Parker AW; Towrie M
    Appl Spectrosc; 2016 Apr; 70(4):645-53. PubMed ID: 26887988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mid-IR femtosecond pulse generation on the microjoule level up to 5 μm at high repetition rates.
    Bradler M; Homann C; Riedle E
    Opt Lett; 2011 Nov; 36(21):4212-4. PubMed ID: 22048368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient continuous-wave and passively Q-switched pulse laser operations in a diffusion-bonded sapphire/Er:Yb:YAl
    Chen Y; Lin Y; Huang J; Gong X; Luo Z; Huang Y
    Opt Express; 2018 Jan; 26(1):419-427. PubMed ID: 29328318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronizing single-shot high-energy iodine photodissociation laser PALS and high-repetition-rate femtosecond Ti:sapphire laser system.
    Dostal J; Dudzak R; Pisarczyk T; Pfeifer M; Huynh J; Chodukowski T; Kalinowska Z; Krousky E; Skala J; Hrebicek J; Medrik T; Golasowski J; Juha L; Ullschmied J
    Rev Sci Instrum; 2017 Apr; 88(4):045109. PubMed ID: 28456257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing the sensitivity of high repetition rate broadband transient optical spectroscopy with modified shot-to-shot detection.
    Hall SJ; Budden PJ; Zats A; Sfeir MY
    Rev Sci Instrum; 2023 Apr; 94(4):. PubMed ID: 38081281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carrier-envelope phase stabilization of a 16 TW, 10  Hz Ti:sapphire laser.
    Takahashi EJ; Fu Y; Midorikawa K
    Opt Lett; 2015 Nov; 40(21):4835-8. PubMed ID: 26512462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carrier envelope phase stabilization of a Yb:KGW laser amplifier.
    Balčiūnas T; Mücke OD; Mišeikis P; Andriukaitis G; Pugžlys A; Giniūnas L; Danielius R; Holzwarth R; Baltuška A
    Opt Lett; 2011 Aug; 36(16):3242-4. PubMed ID: 21847221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz.
    Yesudas F; Mero M; Kneipp J; Heiner Z
    J Chem Phys; 2018 Mar; 148(10):104702. PubMed ID: 29544264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadly tunable femtosecond near- and mid-IR source by direct pumping of an OPA with a 41.7 MHz Yb:KGW oscillator.
    Krauth J; Steinmann A; Hegenbarth R; Conforti M; Giessen H
    Opt Express; 2013 May; 21(9):11516-22. PubMed ID: 23670008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid scan white light two-dimensional electronic spectroscopy with 100 kHz shot-to-shot detection.
    Thomas AS; Bhat VN; Tiwari V
    J Chem Phys; 2023 Dec; 159(24):. PubMed ID: 38156635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast background-free ro-vibrational fs/ps-CARS thermometry using an Yb:YAG crystal-fiber amplified probe.
    Santagata R; Scherman M; Toubeix M; Nafa M; Tretout B; Bresson A
    Opt Express; 2019 Nov; 27(23):32924-32937. PubMed ID: 31878368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-contrast front end based on cascaded XPWG and femtosecond OPA for 10-PW-level Ti:sapphire laser.
    Yu L; Xu Y; Liu Y; Li Y; Li S; Liu Z; Li W; Wu F; Yang X; Yang Y; Wang C; Lu X; Leng Y; Li R; Xu Z
    Opt Express; 2018 Feb; 26(3):2625-2633. PubMed ID: 29401799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.