These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33115068)

  • 1. Demonstration of mid-infrared slow light one-dimensional photonic crystal ring resonator with high-order photonic bandgap.
    Sun F; Dong B; Wei J; Ma Y; Tian H; Lee C
    Opt Express; 2020 Oct; 28(21):30736-30747. PubMed ID: 33115068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Air-mode photonic crystal ring resonator on silicon-on-insulator.
    Gao G; Zhang Y; Zhang H; Wang Y; Huang Q; Xia J
    Sci Rep; 2016 Jan; 6():19999. PubMed ID: 26818430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freestanding Germanium Photonic Crystal Waveguide for a Highly Sensitive and Compact Mid-Infrared On-Chip Gas Sensor.
    Kim I; Lim J; Shim J; Park J; Ahn SY; Lim H; Kim S
    ACS Sens; 2024 Oct; 9(10):5116-5126. PubMed ID: 39410757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral Characterization of Mid-Infrared Bloch Surface Waves Excited on a Truncated 1D Photonic Crystal.
    Occhicone A; Pea M; Polito R; Giliberti V; Sinibaldi A; Mattioli F; Cibella S; Notargiacomo A; Nucara A; Biagioni P; Michelotti F; Ortolani M; Baldassarre L
    ACS Photonics; 2021 Jan; 8(1):350-359. PubMed ID: 33585665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanolayer-embedded pseudo-photonic crystals.
    Park BJ; Jin YH; Park NR; Kim JT; Kim MK
    Nanotechnology; 2019 Nov; 30(47):47LT01. PubMed ID: 31434058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Order Magnetic and Electric Resonant Modes of Split Ring Resonator Metasurface Arrays for Strong Enhancement of Mid-Infrared Photodetection.
    Tong J; Suo F; Tobing LYM; Yao N; Zhang D; Huang Z; Zhang DH
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8835-8844. PubMed ID: 31933365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximizing slow-light enhancement in one-dimensional photonic crystal ring resonators.
    McGarvey-Lechable K; Bianucci P
    Opt Express; 2014 Oct; 22(21):26032-41. PubMed ID: 25401637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coexistence of air and dielectric modes in single nanocavity.
    Sun F; Wei J; Dong B; Ma Y; Chang Y; Tian H; Lee C
    Opt Express; 2019 May; 27(10):14085-14098. PubMed ID: 31163862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy.
    Vlk M; Datta A; Alberti S; Yallew HD; Mittal V; Murugan GS; Jágerská J
    Light Sci Appl; 2021 Jan; 10(1):26. PubMed ID: 33510127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-sensitivity broad free-spectral-range two-dimensional three-slot photonic crystal sensor integrated with a 1D photonic crystal bandgap filter.
    Fu Z; Sun F; Wang C; Wang J; Tian H
    Appl Opt; 2019 Aug; 58(22):5997-6002. PubMed ID: 31503918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental observation of wave localization at the Dirac frequency in a two-dimensional photonic crystal microcavity.
    Hu L; Xie K; Hu Z; Mao Q; Xia J; Jiang H; Zhang J; Wen J; Chen J
    Opt Express; 2018 Apr; 26(7):8213-8223. PubMed ID: 29715790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic crystals with split ring unit cells for subwavelength light confinement.
    Arnold KP; Halimi SI; Allen JA; Hu S; Weiss SM
    Opt Lett; 2022 Feb; 47(3):661-664. PubMed ID: 35103697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photonic crystal vertical-cavity surface-emitting lasers with true photonic bandgap.
    Panajotov K; Dems M
    Opt Lett; 2010 Mar; 35(6):829-31. PubMed ID: 20237613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow light bimodal interferometry in one-dimensional photonic crystal waveguides.
    Torrijos-Morán L; Griol A; García-Rupérez J
    Light Sci Appl; 2021 Jan; 10(1):16. PubMed ID: 33446632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bottom-Up Assembled Photonic Crystals for Structure-Enabled Label-Free Sensing.
    Wang J; Pinkse PWH; Segerink LI; Eijkel JCT
    ACS Nano; 2021 Jun; 15(6):9299-9327. PubMed ID: 34028246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic bandgap plasmonic waveguides.
    Markov A; Reinhardt C; Ung B; Evlyukhin AB; Cheng W; Chichkov BN; Skorobogatiy M
    Opt Lett; 2011 Jul; 36(13):2468-70. PubMed ID: 21725447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Air and dielectric bands photonic crystal microringresonator for refractive index sensing.
    Urbonas D; Balčytis A; Vaškevičius K; Gabalis M; Petruškevičius R
    Opt Lett; 2016 Aug; 41(15):3655-8. PubMed ID: 27472642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast light generation through velocity manipulation in two vertically-stacked ring resonators.
    Ciminelli C; Campanella CE; Dell'Olio F; Armenise MN
    Opt Express; 2010 Feb; 18(3):2973-86. PubMed ID: 20174126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical devices based on liquid crystal photonic bandgap fibres.
    Larsen T; Bjarklev A; Hermann D; Broeng J
    Opt Express; 2003 Oct; 11(20):2589-96. PubMed ID: 19471372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.