These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33115094)

  • 1. Motion parallax enhanced 3-D integral imaging display from the commercial plenoptic camera.
    Ai L; Shi X; Wang X; Cao H; Wang S
    Opt Express; 2020 Oct; 28(21):31127-31139. PubMed ID: 33115094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on high-resolution imaging technology based on light field manipulation for a lenslet-based plenoptic camera.
    Liu X; Ma H; Ren G; Qi B; Xie Z; Chu J; Bai J
    Appl Opt; 2018 Nov; 57(33):9877-9886. PubMed ID: 30462023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depth-of-Field-Extended Plenoptic Camera Based on Tunable Multi-Focus Liquid-Crystal Microlens Array.
    Chen M; He W; Wei D; Hu C; Shi J; Zhang X; Wang H; Xie C
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32722494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational reconstruction for three-dimensional imaging via a diffraction grating.
    Jang JY; Yoo H
    Opt Express; 2019 Sep; 27(20):27820-27830. PubMed ID: 31684543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integral volumetric imaging using decentered elemental lenses.
    Sawada S; Kakeya H
    Opt Express; 2012 Nov; 20(23):25902-13. PubMed ID: 23187407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical full-depth refocusing of 3-D objects based on subdivided-elemental images and local periodic δ-functions in integral imaging.
    Ai LY; Dong XB; Jang JY; Kim ES
    Opt Express; 2016 May; 24(10):10359-75. PubMed ID: 27409860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.
    Shen X; Javidi B
    Appl Opt; 2018 Mar; 57(7):B184-B189. PubMed ID: 29521988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A flipping-free 3D integral imaging display using a twice-imaging lens array.
    Zhang W; Sang X; Gao X; Yu X; Gao C; Yan B; Yu C
    Opt Express; 2019 Oct; 27(22):32810-32822. PubMed ID: 31684486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues.
    Yu X; Sang X; Gao X; Chen Z; Chen D; Duan W; Yan B; Yu C; Xu D
    Opt Express; 2015 Oct; 23(20):25950-8. PubMed ID: 26480110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integral three-dimensional image capture equipment with closely positioned lens array and image sensor.
    Arai J; Yamashita T; Miura M; Hiura H; Okaichi N; Okano F; Funatsu R
    Opt Lett; 2013 Jun; 38(12):2044-6. PubMed ID: 23938971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Annular sector elemental image array generation method for tabletop integral imaging 3D display with smooth motion parallax.
    Xing Y; Xia YP; Li S; Ren H; Wang QH
    Opt Express; 2020 Nov; 28(23):34706-34716. PubMed ID: 33182932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional imaging system with both improved lateral resolution and depth of field considering non-uniform system parameters.
    Yun H; Llavador A; Saavedra G; Cho M
    Appl Opt; 2018 Nov; 57(31):9423-9431. PubMed ID: 30461988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time depth controllable integral imaging pickup and reconstruction method with a light field camera.
    Jeong Y; Kim J; Yeom J; Lee CK; Lee B
    Appl Opt; 2015 Dec; 54(35):10333-41. PubMed ID: 26836855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional image acquisition and reconstruction system on a mobile device based on computer-generated integral imaging.
    Erdenebat MU; Kim BJ; Piao YL; Park SY; Kwon KC; Piao ML; Yoo KH; Kim N
    Appl Opt; 2017 Oct; 56(28):7796-7802. PubMed ID: 29047770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous parallax in discrete pixelated integral three-dimensional displays.
    Forman MC; Davies N; McCormick M
    J Opt Soc Am A Opt Image Sci Vis; 2003 Mar; 20(3):411-20. PubMed ID: 12630827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real object pickup method of integral imaging using offset lens array.
    Yim J; Choi KH; Min SW
    Appl Opt; 2017 May; 56(13):F167-F172. PubMed ID: 28463313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens.
    Wang YJ; Shen X; Lin YH; Javidi B
    Opt Lett; 2015 Aug; 40(15):3564-7. PubMed ID: 26258358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallax360: Stereoscopic 360° Scene Representation for Head-Motion Parallax.
    Luo B; Xu F; Richardt C; Yong JH
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1545-1553. PubMed ID: 29543172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens.
    Shen X; Wang YJ; Chen HS; Xiao X; Lin YH; Javidi B
    Opt Lett; 2015 Feb; 40(4):538-41. PubMed ID: 25680144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electrically tunable plenoptic camera using a liquid crystal microlens array.
    Lei Y; Tong Q; Zhang X; Sang H; Ji A; Xie C
    Rev Sci Instrum; 2015 May; 86(5):053101. PubMed ID: 26026508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.