These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 33115224)
1. Forecasting of salmonellosis epidemic proces in Ukraine using autoregressive integrated moving average model. Bohdanov S; Polyvianna Y; Chumachenko T; Chumachenko D Przegl Epidemiol; 2020; 74(2):346-354. PubMed ID: 33115224 [TBL] [Abstract][Full Text] [Related]
2. Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models. Adeyinka DA; Muhajarine N BMC Med Res Methodol; 2020 Dec; 20(1):292. PubMed ID: 33267817 [TBL] [Abstract][Full Text] [Related]
3. Application of one-, three-, and seven-day forecasts during early onset on the COVID-19 epidemic dataset using moving average, autoregressive, autoregressive moving average, autoregressive integrated moving average, and naïve forecasting methods. Lynch CJ; Gore R Data Brief; 2021 Apr; 35():106759. PubMed ID: 33521186 [TBL] [Abstract][Full Text] [Related]
4. Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: a case study in endemic districts of Bhutan. Wangdi K; Singhasivanon P; Silawan T; Lawpoolsri S; White NJ; Kaewkungwal J Malar J; 2010 Sep; 9():251. PubMed ID: 20813066 [TBL] [Abstract][Full Text] [Related]
5. Interruption time series analysis using autoregressive integrated moving average model: evaluating the impact of COVID-19 on the epidemic trend of gonorrhea in China. Li Y; Liu X; Li X; Xue C; Zhang B; Wang Y BMC Public Health; 2023 Oct; 23(1):2073. PubMed ID: 37872621 [TBL] [Abstract][Full Text] [Related]
6. Incidence and risk factors of salmonellosis in Ukraine. Podavalenko A; Malysh N; Zadorozhna V; Chemych M; Biryukova S; Chorna I Folia Med Cracov; 2021; 61(2):91-102. PubMed ID: 34510167 [TBL] [Abstract][Full Text] [Related]
7. [Autoregressive integrated moving average model in food poisoning prediction in Hunan Province]. Chen L; Xu H Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2012 Feb; 37(2):142-6. PubMed ID: 22561430 [TBL] [Abstract][Full Text] [Related]
8. [Application of ARIMA model to predict number of malaria cases in China]. Hui-Yu H; Hua-Qin S; Shun-Xian Z; Lin AI; Yan LU; Yu-Chun C; Shi-Zhu LI; Xue-Jiao T; Chun-Li Y; Wei HU; Jia-Xu C Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2017 Aug; 29(4):436-440. PubMed ID: 29508575 [TBL] [Abstract][Full Text] [Related]
9. Application of an autoregressive integrated moving average model for predicting injury mortality in Xiamen, China. Lin Y; Chen M; Chen G; Wu X; Lin T BMJ Open; 2015 Dec; 5(12):e008491. PubMed ID: 26656013 [TBL] [Abstract][Full Text] [Related]
10. [Prediction of schistosomiasis infection rates of population based on ARIMA-NARNN model]. Ke-Wei W; Yu W; Jin-Ping L; Yu-Yu J Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2016 Jul; 28(6):630-634. PubMed ID: 29469251 [TBL] [Abstract][Full Text] [Related]
11. Assessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza A virus frequency in swine in Ontario, Canada. Petukhova T; Ojkic D; McEwen B; Deardon R; Poljak Z PLoS One; 2018; 13(6):e0198313. PubMed ID: 29856881 [TBL] [Abstract][Full Text] [Related]
12. Forecasting of COVID-19 incidence in Ukraine using the method of exponential smoothing. Malysh N; Podavalenko A; Kuzmenko O; Kolomiets S Folia Med Cracov; 2022 Jun; 62(1):103-120. PubMed ID: 36088596 [TBL] [Abstract][Full Text] [Related]
13. [Study on the ARIMA model application to predict echinococcosis cases in China]. En-Li T; Zheng-Feng W; Wen-Ce Z; Shi-Zhu L; Yan L; Lin A; Yu-Chun C; Xue-Jiao T; Shun-Xian Z; Zhi-Sheng D; Chun-Li Y; Jia-Xu C; Wei H; Xiao-Nong Z; Li-Guang T Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2018 Feb; 30(1):47-53. PubMed ID: 29536707 [TBL] [Abstract][Full Text] [Related]
14. Forecasting incidence of hand, foot and mouth disease using BP neural networks in Jiangsu province, China. Liu W; Bao C; Zhou Y; Ji H; Wu Y; Shi Y; Shen W; Bao J; Li J; Hu J; Huo X BMC Infect Dis; 2019 Oct; 19(1):828. PubMed ID: 31590636 [TBL] [Abstract][Full Text] [Related]
15. Near-term forecasts of influenza-like illness: An evaluation of autoregressive time series approaches. Kandula S; Shaman J Epidemics; 2019 Jun; 27():41-51. PubMed ID: 30792135 [TBL] [Abstract][Full Text] [Related]
16. Performance of time-series methods in forecasting the demand for red blood cell transfusion. Pereira A Transfusion; 2004 May; 44(5):739-46. PubMed ID: 15104656 [TBL] [Abstract][Full Text] [Related]
17. [Application of autoregressive integrated moving average model to predict and analyze the incidence trend of mumps in Jiangxi Province]. Zhao YQ; Shi JH; Xu F; Guo SC Zhonghua Liu Xing Bing Xue Za Zhi; 2023 Dec; 44(12):1911-1915. PubMed ID: 38129147 [No Abstract] [Full Text] [Related]
18. The Use of an Autoregressive Integrated Moving Average Model for Prediction of the Incidence of Dysentery in Jiangsu, China. Wang K; Song W; Li J; Lu W; Yu J; Han X Asia Pac J Public Health; 2016 May; 28(4):336-46. PubMed ID: 27106828 [TBL] [Abstract][Full Text] [Related]
19. [Application of ARIMA model in predicting the incidence of tuberculosis in China from 2018 to 2019]. Yan CQ; Wang RB; Liu HC; Jiang Y; Li MC; Yin SP; Xiao TY; Wan KL; Rang WQ Zhonghua Liu Xing Bing Xue Za Zhi; 2019 Jun; 40(6):633-637. PubMed ID: 31238610 [No Abstract] [Full Text] [Related]
20. [Application of ARIMA model on prediction of malaria incidence]. Jing X; Hua-Xun Z; Wen L; Su-Jian P; Ling-Cong S; Xiao-Rong D; Mu-Min C; Dong-Ni W; Shunxiang C Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2016 Jan; 28(2):135-140. PubMed ID: 29469288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]