These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33115232)

  • 21. Synthesis of Spiked Plasmonic Nanorods with an Interior Nanogap for Quantitative Surface-Enhanced Raman Scattering Analysis.
    Zhang Y; Li C; Fakhraai Z; Moosa B; Yang P; Khashab NM
    ACS Omega; 2018 Oct; 3(10):14399-14405. PubMed ID: 31458127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Near-unity Raman β-factor of surface-enhanced Raman scattering in a waveguide.
    Fu M; Mota MPDP; Xiao X; Jacassi A; Güsken NA; Chen Y; Xiao H; Li Y; Riaz A; Maier SA; Oulton RF
    Nat Nanotechnol; 2022 Dec; 17(12):1251-1257. PubMed ID: 36302960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Novel SERS Substrate Platform: Spatially Stacking Plasmonic Hotspots Films.
    Tang L; Liu Y; Liu G; Chen Q; Li Y; Shi L; Liu Z; Liu X
    Nanoscale Res Lett; 2019 Mar; 14(1):94. PubMed ID: 30868395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Frequency Shift Surface-Enhanced Raman Spectroscopy Sensing: An Ultrasensitive Multiplex Assay for Biomarkers in Human Health.
    Zhu W; Hutchison JA; Dong M; Li M
    ACS Sens; 2021 May; 6(5):1704-1716. PubMed ID: 33939402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electromagnetic theories of surface-enhanced Raman spectroscopy.
    Ding SY; You EM; Tian ZQ; Moskovits M
    Chem Soc Rev; 2017 Jul; 46(13):4042-4076. PubMed ID: 28660954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On-Demand Electromagnetic Hotspot Generation in Surface-Enhanced Raman Scattering Substrates via "Add-On" Plasmonic Patch.
    Gupta P; Luan J; Wang Z; Cao S; Bae SH; Naik RR; Singamaneni S
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37939-37946. PubMed ID: 31525866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrafast and nonlinear surface-enhanced Raman spectroscopy.
    Gruenke NL; Cardinal MF; McAnally MO; Frontiera RR; Schatz GC; Van Duyne RP
    Chem Soc Rev; 2016 Apr; 45(8):2263-90. PubMed ID: 26848784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multilayer Ag-Embedded Silica Nanostructure as a Surface-Enhanced Raman Scattering-Based Chemical Sensor with Dual-Function Internal Standards.
    Hahm E; Cha MG; Kang EJ; Pham XH; Lee SH; Kim HM; Kim DE; Lee YS; Jeong DH; Jun BH
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40748-40755. PubMed ID: 30375227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly sensitive and uniform surface-enhanced Raman spectroscopy from grating-integrated plasmonic nanograss.
    Shen Y; Cheng X; Li G; Zhu Q; Chi Z; Wang J; Jin C
    Nanoscale Horiz; 2016 Jul; 1(4):290-297. PubMed ID: 32260648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmonic nano-protrusions: hierarchical nanostructures for single-molecule Raman spectroscopy.
    Basuray S; Pathak A; Bok S; Chen B; Hamm SC; Mathai CJ; Guha S; Gangopadhyay K; Gangopadhyay S
    Nanotechnology; 2017 Jan; 28(2):025302. PubMed ID: 27905323
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. UV Irradiation-Induced SERS Enhancement in Randomly Distributed Au Nanostructures.
    Lee DJ; Kim DY
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32660155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasensitive enhanced Raman spectroscopy by hybrid surface-enhanced and interference-enhanced Raman scattering with metal-insulator-metal structures.
    Liu K; Gong T; Luo Y; Kong W; Yue W; Wang C; Luo X
    Opt Express; 2023 May; 31(10):15848-15863. PubMed ID: 37157676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current strategies of plasmonic nanoparticles assisted surface-enhanced Raman scattering toward biosensor studies.
    Zhou Y; Lu Y; Liu Y; Hu X; Chen H
    Biosens Bioelectron; 2023 May; 228():115231. PubMed ID: 36934607
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanostructured plasmonic substrates for use as SERS sensors.
    Jeon TY; Kim DJ; Park SG; Kim SH; Kim DH
    Nano Converg; 2016; 3(1):18. PubMed ID: 28191428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance.
    Huang H; Wang JH; Jin W; Li P; Chen M; Xie HH; Yu XF; Wang H; Dai Z; Xiao X; Chu PK
    Small; 2014 Oct; 10(19):4012-9. PubMed ID: 24947686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unravelling the relationship between Raman enhancement and photocatalytic activity on single anisotropic Au microplates.
    Sun Y; Liu H; Zhou F; Yang L; He S; Sun B; Liu J
    Chemistry; 2014 Aug; 20(33):10414-24. PubMed ID: 25042618
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermally activated Cu/Cu2S/ZnO nanoarchitectures with surface-plasmon-enhanced Raman scattering.
    Lin YG; Hsu YK; Chuang CJ; Lin YC; Chen YC
    J Colloid Interface Sci; 2016 Feb; 464():66-72. PubMed ID: 26609924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metallo-dielectric photonic crystals for surface-enhanced Raman scattering.
    Zhao Y; Zhang XJ; Ye J; Chen LM; Lau SP; Zhang WJ; Lee ST
    ACS Nano; 2011 Apr; 5(4):3027-33. PubMed ID: 21443259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.