These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33115883)

  • 1. Bioinspired wing and tail morphing extends drone flight capabilities.
    Ajanic E; Feroskhan M; Mintchev S; Noca F; Floreano D
    Sci Robot; 2020 Oct; 5(47):. PubMed ID: 33115883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired morphing wings for extended flight envelope and roll control of small drones.
    Di Luca M; Mintchev S; Heitz G; Noca F; Floreano D
    Interface Focus; 2017 Feb; 7(1):20160092. PubMed ID: 28163882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gull-inspired joint-driven wing morphing allows adaptive longitudinal flight control.
    Harvey C; Baliga VB; Goates CD; Hunsaker DF; Inman DJ
    J R Soc Interface; 2021 Jun; 18(179):20210132. PubMed ID: 34102085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bioinspired revolving-wing drone with passive attitude stability and efficient hovering flight.
    Bai S; He Q; Chirarattananon P
    Sci Robot; 2022 May; 7(66):eabg5913. PubMed ID: 35544606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired morphing wings: mechanical design and wind tunnel experiments.
    Kilian L; Shahid F; Zhao JS; Nayeri CN
    Bioinspir Biomim; 2022 Jul; 17(4):. PubMed ID: 35609562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bioinspired Separated Flow wing provides turbulence resilience and aerodynamic efficiency for miniature drones.
    Di Luca M; Mintchev S; Su Y; Shaw E; Breuer K
    Sci Robot; 2020 Jan; 5(38):. PubMed ID: 33022594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces.
    Lees JJ; Dimitriadis G; Nudds RL
    PeerJ; 2016; 4():e2495. PubMed ID: 27781155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wing morphing allows gulls to modulate static pitch stability during gliding.
    Harvey C; Baliga VB; Lavoie P; Altshuler DL
    J R Soc Interface; 2019 Jan; 16(150):20180641. PubMed ID: 30958156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gull dynamic pitch stability is controlled by wing morphing.
    Harvey C; Inman DJ
    Proc Natl Acad Sci U S A; 2022 Sep; 119(37):e2204847119. PubMed ID: 36067296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Mission-Oriented Flight Path and Charging Mechanism for Internet of Drones.
    Huang CJ; Hu KW; Cheng HW; Sie Lin YS
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embodied airflow sensing for improved in-gust flight of flapping wing MAVs.
    Wang C; Wang S; De Croon G; Hamaza S
    Front Robot AI; 2022; 9():1060933. PubMed ID: 36569593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A stunt flying hawk-inspired drone.
    Lau GK
    Sci Robot; 2020 Oct; 5(47):. PubMed ID: 33115886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Experimental and Simulation Study of the Active Camber Morphing Concept on Airfoils Using Bio-Inspired Structures.
    Dharmdas A; Patil AY; Baig A; Hosmani OZ; Mathad SN; Patil MB; Kumar R; Kotturshettar BB; Fattah IMR
    Biomimetics (Basel); 2023 Jun; 8(2):. PubMed ID: 37366846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.
    Klaassen van Oorschot B; Mistick EA; Tobalske BW
    J Exp Biol; 2016 Oct; 219(Pt 19):3146-3154. PubMed ID: 27473437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How swifts control their glide performance with morphing wings.
    Lentink D; Müller UK; Stamhuis EJ; de Kat R; van Gestel W; Veldhuis LL; Henningsson P; Hedenström A; Videler JJ; van Leeuwen JL
    Nature; 2007 Apr; 446(7139):1082-5. PubMed ID: 17460673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How do birds' tails work? Delta-wing theory fails to predict tail shape during flight.
    Evans MR; Rosén M; Park KJ; Hedenström A
    Proc Biol Sci; 2002 May; 269(1495):1053-7. PubMed ID: 12028763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Flaps Inspired by Avian Feathers Can Enhance Aerodynamic Robustness in low Reynolds Number Airfoils.
    Murayama Y; Nakata T; Liu H
    Front Bioeng Biotechnol; 2021; 9():612182. PubMed ID: 34026737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics and biomimetics in insect-inspired flight systems.
    Liu H; Ravi S; Kolomenskiy D; Tanaka H
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of avian flight: muscles and constraints on performance.
    Tobalske BW
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.