These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 33116128)

  • 1. Genome biology of the paleotetraploid perennial biomass crop Miscanthus.
    Mitros T; Session AM; James BT; Wu GA; Belaffif MB; Clark LV; Shu S; Dong H; Barling A; Holmes JR; Mattick JE; Bredeson JV; Liu S; Farrar K; Głowacka K; Jeżowski S; Barry K; Chae WB; Juvik JA; Gifford J; Oladeinde A; Yamada T; Grimwood J; Putnam NH; De Vega J; Barth S; Klaas M; Hodkinson T; Li L; Jin X; Peng J; Yu CY; Heo K; Yoo JH; Ghimire BK; Donnison IS; Schmutz J; Hudson ME; Sacks EJ; Moose SP; Swaminathan K; Rokhsar DS
    Nat Commun; 2020 Oct; 11(1):5442. PubMed ID: 33116128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy.
    Swaminathan K; Chae WB; Mitros T; Varala K; Xie L; Barling A; Glowacka K; Hall M; Jezowski S; Ming R; Hudson M; Juvik JA; Rokhsar DS; Moose SP
    BMC Genomics; 2012 Apr; 13():142. PubMed ID: 22524439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis.
    Ma XF; Jensen E; Alexandrov N; Troukhan M; Zhang L; Thomas-Jones S; Farrar K; Clifton-Brown J; Donnison I; Swaller T; Flavell R
    PLoS One; 2012; 7(3):e33821. PubMed ID: 22439001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequencing of transcriptomes from two Miscanthus species reveals functional specificity in rhizomes, and clarifies evolutionary relationships.
    Kim C; Lee TH; Guo H; Chung SJ; Paterson AH; Kim DS; Lee GJ
    BMC Plant Biol; 2014 May; 14():134. PubMed ID: 24884969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A detailed gene expression study of the Miscanthus genus reveals changes in the transcriptome associated with the rejuvenation of spring rhizomes.
    Barling A; Swaminathan K; Mitros T; James BT; Morris J; Ngamboma O; Hall MC; Kirkpatrick J; Alabady M; Spence AK; Hudson ME; Rokhsar DS; Moose SP
    BMC Genomics; 2013 Dec; 14(1):864. PubMed ID: 24320546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosome-scale assembly and analysis of biomass crop Miscanthus lutarioriparius genome.
    Miao J; Feng Q; Li Y; Zhao Q; Zhou C; Lu H; Fan D; Yan J; Lu Y; Tian Q; Li W; Weng Q; Zhang L; Zhao Y; Huang T; Li L; Huang X; Sang T; Han B
    Nat Commun; 2021 Apr; 12(1):2458. PubMed ID: 33911077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The reference genome of Miscanthus floridulus illuminates the evolution of Saccharinae.
    Zhang G; Ge C; Xu P; Wang S; Cheng S; Han Y; Wang Y; Zhuang Y; Hou X; Yu T; Xu X; Deng S; Li Q; Yang Y; Yin X; Wang W; Liu W; Zheng C; Sun X; Wang Z; Ming R; Dong S; Ma J; Zhang X; Chen C
    Nat Plants; 2021 May; 7(5):608-618. PubMed ID: 33958777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day response, whilst delayed flowering under long days increases biomass accumulation.
    Jensen E; Robson P; Norris J; Cookson A; Farrar K; Donnison I; Clifton-Brown J
    J Exp Bot; 2013 Jan; 64(2):541-52. PubMed ID: 23183254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Population structure of Miscanthus sacchariflorus reveals two major polyploidization events, tetraploid-mediated unidirectional introgression from diploid M. sinensis, and diversity centred around the Yellow Sea.
    Clark LV; Jin X; Petersen KK; Anzoua KG; Bagmet L; Chebukin P; Deuter M; Dzyubenko E; Dzyubenko N; Heo K; Johnson DA; Jørgensen U; Kjeldsen JB; Nagano H; Peng J; Sabitov A; Yamada T; Yoo JH; Yu CY; Long SP; Sacks EJ
    Ann Bot; 2019 Oct; 124(4):731-748. PubMed ID: 30247525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic and small RNA sequencing of Miscanthus x giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses.
    Swaminathan K; Alabady MS; Varala K; De Paoli E; Ho I; Rokhsar DS; Arumuganathan AK; Ming R; Green PJ; Meyers BC; Moose SP; Hudson ME
    Genome Biol; 2010; 11(2):R12. PubMed ID: 20128909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan.
    Nishiwaki A; Mizuguti A; Kuwabara S; Toma Y; Ishigaki G; Miyashita T; Yamada T; Matuura H; Yamaguchi S; Rayburn AL; Akashi R; Stewart JR
    Am J Bot; 2011 Jan; 98(1):154-9. PubMed ID: 21613094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops.
    Mullet J; Morishige D; McCormick R; Truong S; Hilley J; McKinley B; Anderson R; Olson SN; Rooney W
    J Exp Bot; 2014 Jul; 65(13):3479-89. PubMed ID: 24958898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete Chloroplast Genomes of Erianthus arundinaceus and Miscanthus sinensis: Comparative Genomics and Evolution of the Saccharum Complex.
    Tsuruta SI; Ebina M; Kobayashi M; Takahashi W
    PLoS One; 2017; 12(1):e0169992. PubMed ID: 28125648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SSR-based genetic maps of Miscanthus sinensis and M. sacchariflorus, and their comparison to sorghum.
    Kim C; Zhang D; Auckland SA; Rainville LK; Jakob K; Kronmiller B; Sacks EJ; Deuter M; Paterson AH
    Theor Appl Genet; 2012 May; 124(7):1325-38. PubMed ID: 22274765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maize and sorghum: genetic resources for bioenergy grasses.
    Carpita NC; McCann MC
    Trends Plant Sci; 2008 Aug; 13(8):415-20. PubMed ID: 18650120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A footprint of past climate change on the diversity and population structure of Miscanthus sinensis.
    Clark LV; Brummer JE; Głowacka K; Hall MC; Heo K; Peng J; Yamada T; Yoo JH; Yu CY; Zhao H; Long SP; Sacks EJ
    Ann Bot; 2014 Jul; 114(1):97-107. PubMed ID: 24918203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecological characteristics and in situ genetic associations for yield-component traits of wild Miscanthus from eastern Russia.
    Clark LV; Dzyubenko E; Dzyubenko N; Bagmet L; Sabitov A; Chebukin P; Johnson DA; Kjeldsen JB; Petersen KK; Jørgensen U; Yoo JH; Heo K; Yu CY; Zhao H; Jin X; Peng J; Yamada T; Sacks EJ
    Ann Bot; 2016 Oct; 118(5):941-955. PubMed ID: 27451985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DArT-based characterisation of genetic diversity in a Miscanthus collection from Poland.
    Tang J; Daroch M; Kilian A; Jeżowski S; Pogrzeba M; Mos M
    Planta; 2015 Oct; 242(4):985-96. PubMed ID: 26040407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomics and proteomics reveal genetic and biological basis of superior biomass crop Miscanthus.
    Sheng J; Zheng X; Wang J; Zeng X; Zhou F; Jin S; Hu Z; Diao Y
    Sci Rep; 2017 Oct; 7(1):13777. PubMed ID: 29062090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic diversity and population structure of Miscanthus sinensis germplasm in China.
    Zhao H; Wang B; He J; Yang J; Pan L; Sun D; Peng J
    PLoS One; 2013; 8(10):e75672. PubMed ID: 24116066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.