These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33116207)

  • 1. Centrifugal granulation behavior in metallic powder fabrication by plasma rotating electrode process.
    Zhao Y; Cui Y; Numata H; Bian H; Wako K; Yamanaka K; Aoyagi K; Chiba A
    Sci Rep; 2020 Oct; 10(1):18446. PubMed ID: 33116207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Quality Spherical Silver Alloy Powder for Laser Powder Bed Fusion Using Plasma Rotating Electrode Process.
    Li H; Zhang S; Chen Q; Du Z; Chen X; Chen X; Zhou S; Mei S; Ke L; Sun Q; Yin Z; Yin J; Li Z
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitinol powders generate from Plasma Rotation Electrode Process provide clean powder for biomedical devices used with suitable size, spheroid surface and pure composition.
    Hsu TI; Wei CM; Wu LD; Li YP; Chiba A; Tsai MH
    Sci Rep; 2018 Sep; 8(1):13776. PubMed ID: 30213990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Study on Internal Defects of PREP Metallic Powders by Using X-ray Computed Tomography.
    Nie Y; Tang J; Huang J; Yu S; Li Y
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33802258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-Dependent Structural Properties of a High-Nb TiAl Alloy Powder.
    Liu B; Wang M; Du Y; Li J
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and Microstructure of High-Activity Spherical TaNbTiZr Refractory High-Entropy Alloy Powders.
    Gao S; Fu A; Xie Z; Liao T; Cao Y; Liu B
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser Operating Windows Prediction in Selective Laser-Melting Processing of Metallic Powders: Development and Validation of a Computational Fluid Dynamics-Based Model.
    Ridolfi MR; Folgarait P; Di Schino A
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32245059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Electrode Induction Melting Gas Atomization on Powder Quality: Satellite Formation Mechanism and Pressure.
    Wu J; Xia M; Wang J; Zhao B; Ge C
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.
    Gülsoy HÖ; Gülsoy N; Calışıcı R
    Biomed Mater Eng; 2014; 24(5):1861-73. PubMed ID: 25201399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Powder Synthesis and Characterization of Al
    Li Y; Sui Y; Feng Y; Zhang Y; Li Y; Song M; Gong S; Xie Y
    ACS Omega; 2024 Apr; 9(16):18358-18365. PubMed ID: 38680307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CFD Modeling of Primary Breakup in an EIGA Atomizer for Titanium Alloy Powder Production.
    Guo K; Liu C; Chen W; Luo C; Li J
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Powder Characteristics on Processability of AlSi12 Alloy Fabricated by Selective Laser Melting.
    Baitimerov R; Lykov P; Zherebtsov D; Radionova L; Shultc A; Prashanth KG
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29735932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Atomization Pressure on the Particle Size of Nickel-Based Superalloy Powders by Numerical Simulation.
    Qing Y; Guo K; Liu C; Qin Y; Zhan Y; Shuo S; Wei Y; Yu B; Liu C
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Process Analytical Technology for High Shear Wet Granulation: Wet Mass Consistency Reported by In-Line Drag Flow Force Sensor Is Consistent With Powder Rheology Measured by At-Line FT4 Powder Rheometer.
    Narang AS; Sheverev V; Freeman T; Both D; Stepaniuk V; Delancy M; Millington-Smith D; Macias K; Subramanian G
    J Pharm Sci; 2016 Jan; 105(1):182-7. PubMed ID: 26852853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comprehensive Approach to Powder Feedstock Characterization for Powder Bed Fusion Additive Manufacturing: A Case Study on AlSi7Mg.
    Muñiz-Lerma JA; Nommeots-Nomm A; Waters KE; Brochu M
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30486411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-physics coupling simulation of electrode induction melting gas atomization for advanced titanium alloys powder preparation.
    Li H; Shen Y; Liu P; Liang W; Wang M; Wang S
    Sci Rep; 2021 Nov; 11(1):23106. PubMed ID: 34845264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-Scale Spherical Granulation Using a Planetary Centrifugal Mixer.
    Eda T; Miyazaki Y; Uchino T; Kagawa Y
    Chem Pharm Bull (Tokyo); 2020; 68(3):251-257. PubMed ID: 32115532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling up of the fluidized bed granulation process.
    Rambali B; Baert L; Massart DL
    Int J Pharm; 2003 Feb; 252(1-2):197-206. PubMed ID: 12550795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bottom-Up Design of Composite Supraparticles for Powder-Based Additive Manufacturing.
    Canziani H; Chiera S; Schuffenhauer T; Kopp SP; Metzger F; Bück A; Schmidt M; Vogel N
    Small; 2020 Jul; 16(30):e2002076. PubMed ID: 32578351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing particle-scale powder spreading dynamics in powder-bed-based additive manufacturing process by high-speed x-ray imaging.
    Escano LI; Parab ND; Xiong L; Guo Q; Zhao C; Fezzaa K; Everhart W; Sun T; Chen L
    Sci Rep; 2018 Oct; 8(1):15079. PubMed ID: 30305675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.