BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33116242)

  • 1. Early lineage segregation of the retinal basal glia in the Drosophila eye disc.
    Tsao CK; Huang YF; Sun YH
    Sci Rep; 2020 Oct; 10(1):18522. PubMed ID: 33116242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Migration of glia along photoreceptor axons in the developing Drosophila eye.
    Choi KW; Benzer S
    Neuron; 1994 Feb; 12(2):423-31. PubMed ID: 8110466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal and spatial order of photoreceptor and glia projections into optic lobe in Drosophila.
    Chang YC; Tsao CK; Sun YH
    Sci Rep; 2018 Aug; 8(1):12669. PubMed ID: 30140062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Migration and function of glia in the developing Drosophila eye.
    Rangarajan R; Gong Q; Gaul U
    Development; 1999 Aug; 126(15):3285-92. PubMed ID: 10393108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The exit of axons and glial membrane from the developing Drosophila retina requires integrins.
    Ren Q; Rao Y
    Mol Brain; 2022 Jan; 15(1):2. PubMed ID: 34980203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Pebble/Rho1/Anillin pathway controls polyploidization and axonal wrapping activity in the glial cells of the Drosophila eye.
    Tavares L; Grácio P; Ramos R; Traquete R; Relvas JB; Pereira PS
    Dev Biol; 2021 May; 473():90-96. PubMed ID: 33581137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Migration of glial cells into retinal axon target field in Drosophila melanogaster.
    Perez SE; Steller H
    J Neurobiol; 1996 Jul; 30(3):359-73. PubMed ID: 8807529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An RNAi screen for secreted factors and cell-surface players in coordinating neuron and glia development in Drosophila.
    Liu Z; Chen Y; Rao Y
    Mol Brain; 2020 Jan; 13(1):1. PubMed ID: 31900209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switch in FGF signalling initiates glial differentiation in the Drosophila eye.
    Franzdóttir SR; Engelen D; Yuva-Aydemir Y; Schmidt I; Aho A; Klämbt C
    Nature; 2009 Aug; 460(7256):758-61. PubMed ID: 19597479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DPP signaling controls development of the lamina glia required for retinal axon targeting in the visual system of Drosophila.
    Yoshida S; Soustelle L; Giangrande A; Umetsu D; Murakami S; Yasugi T; Awasaki T; Ito K; Sato M; Tabata T
    Development; 2005 Oct; 132(20):4587-98. PubMed ID: 16176948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of focal adhesions in glia disrupts both glial and photoreceptor axon migration in the Drosophila visual system.
    Xie X; Gilbert M; Petley-Ragan L; Auld VJ
    Development; 2014 Aug; 141(15):3072-83. PubMed ID: 25053436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An axon scaffold induced by retinal axons directs glia to destinations in the Drosophila optic lobe.
    Dearborn R; Kunes S
    Development; 2004 May; 131(10):2291-303. PubMed ID: 15102705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction and autoregulation of the anti-proneural gene Bar during retinal neurogenesis in Drosophila.
    Lim J; Choi KW
    Development; 2004 Nov; 131(22):5573-80. PubMed ID: 15496446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Borderless regulates glial extension and axon ensheathment.
    Cameron S; Chen Y; Rao Y
    Dev Biol; 2016 Jun; 414(2):170-80. PubMed ID: 27131624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axonal wrapping in the Drosophila PNS is controlled by glia-derived neuregulin homolog Vein.
    Matzat T; Sieglitz F; Kottmeier R; Babatz F; Engelen D; Klämbt C
    Development; 2015 Apr; 142(7):1336-45. PubMed ID: 25758464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focal adhesion kinase controls morphogenesis of the Drosophila optic stalk.
    Murakami S; Umetsu D; Maeyama Y; Sato M; Yoshida S; Tabata T
    Development; 2007 Apr; 134(8):1539-48. PubMed ID: 17360775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic genome wide expression profiling of Drosophila head development reveals a novel role of Hunchback in retinal glia cell development and blood-brain barrier integrity.
    Torres-Oliva M; Schneider J; Wiegleb G; Kaufholz F; Posnien N
    PLoS Genet; 2018 Jan; 14(1):e1007180. PubMed ID: 29360820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation and early differentiation of glial cells in the first optic ganglion of Drosophila melanogaster.
    Winberg ML; Perez SE; Steller H
    Development; 1992 Aug; 115(4):903-11. PubMed ID: 1451666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wingless signaling in Drosophila eye development.
    Legent K; Treisman JE
    Methods Mol Biol; 2008; 469():141-61. PubMed ID: 19109709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drosophila PS2 and PS3 integrins play distinct roles in retinal photoreceptors-glia interactions.
    Tavares L; Pereira E; Correia A; Santos MA; Amaral N; Martins T; Relvas JB; Pereira PS
    Glia; 2015 Jul; 63(7):1155-65. PubMed ID: 25731761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.