These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33118096)

  • 1. Gas separation using graphene nanosheet: insights from theory and simulation.
    Fatemi SM; Fatemi SJ; Abbasi Z
    J Mol Model; 2020 Oct; 26(11):322. PubMed ID: 33118096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene.
    Villalobos LF; Babu DJ; Hsu KJ; Van Goethem C; Agrawal KV
    Acc Mater Res; 2022 Oct; 3(10):1073-1087. PubMed ID: 36338295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive molecular dynamic simulations on the gas separation performance of porous graphene membrane.
    Esfandiarpoor S; Fazli M; Ganji MD
    Sci Rep; 2017 Nov; 7(1):16561. PubMed ID: 29185458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decimeter-Scale Atomically Thin Graphene Membranes for Gas-Liquid Separation.
    Hou D; Zhang S; Chen X; Song R; Zhang D; Yao A; Sun J; Wang W; Sun L; Chen B; Liu Z; Wang L
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10328-10335. PubMed ID: 33599473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Gas Separation through Graphene Nanopore Ensembles with Realistic Pore Size Distributions.
    Yuan Z; Govind Rajan A; He G; Misra RP; Strano MS; Blankschtein D
    ACS Nano; 2021 Jan; 15(1):1727-1740. PubMed ID: 33439000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous Graphene Oxide/Porous Organic Polymer Hybrid Nanosheets Functionalized Mixed Matrix Membrane for Efficient CO
    He R; Cong S; Wang J; Liu J; Zhang Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4338-4344. PubMed ID: 30615834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas Separations using Nanoporous Atomically Thin Membranes: Recent Theoretical, Simulation, and Experimental Advances.
    Yuan Z; He G; Li SX; Misra RP; Strano MS; Blankschtein D
    Adv Mater; 2022 Aug; 34(32):e2201472. PubMed ID: 35389537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical Prediction of Gas Permeation through Graphene Nanopores of Varying Sizes: Understanding Transitions across Multiple Transport Regimes.
    Yuan Z; Misra RP; Rajan AG; Strano MS; Blankschtein D
    ACS Nano; 2019 Oct; 13(10):11809-11824. PubMed ID: 31532624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Pore Size from Sub-Nanometer to a Few Nanometers in Large-Area Graphene Nanoporous Atomically Thin Membranes.
    Chen X; Zhang S; Hou D; Duan H; Deng B; Zeng Z; Liu B; Sun L; Song R; Du J; Gao P; Peng H; Liu Z; Wang L
    ACS Appl Mater Interfaces; 2021 Jun; ():. PubMed ID: 34133124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous graphene as the ultimate membrane for gas separation.
    Jiang DE; Cooper VR; Dai S
    Nano Lett; 2009 Dec; 9(12):4019-24. PubMed ID: 19995080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion-Gated Gas Separation through Porous Graphene.
    Tian Z; Mahurin SM; Dai S; Jiang DE
    Nano Lett; 2017 Mar; 17(3):1802-1807. PubMed ID: 28231000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of CH
    Ghiasi M; Zeinali P; Gholami S; Zahedi M
    J Mol Model; 2021 Jun; 27(7):201. PubMed ID: 34121149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Evaluation of Graphene Membrane Performance for Hydrogen Separation Using Molecular Dynamic Simulation.
    Nouri M; Ghasemzadeh K; Iulianelli A
    Membranes (Basel); 2019 Aug; 9(9):. PubMed ID: 31461938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadening the Gas Separation Utility of Monolayer Nanoporous Graphene Membranes by an Ionic Liquid Gating.
    Guo W; Mahurin SM; Unocic RR; Luo H; Dai S
    Nano Lett; 2020 Nov; 20(11):7995-8000. PubMed ID: 33064492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single- to Few-Layered, Graphene-Based Separation Membranes.
    Zhou F; Fathizadeh M; Yu M
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():17-39. PubMed ID: 29570357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable, Temperature-Dependent Gas Mixture Permeation and Separation through Suspended Nanoporous Single-Layer Graphene Membranes.
    Yuan Z; Benck JD; Eatmon Y; Blankschtein D; Strano MS
    Nano Lett; 2018 Aug; 18(8):5057-5069. PubMed ID: 30044919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid screening of nanopore candidates in nanoporous single-layer graphene for selective separations using molecular visualization and interatomic potentials.
    Bondaz L; Chow CM; Karnik R
    J Chem Phys; 2021 May; 154(18):184111. PubMed ID: 34241041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of chemical functionalization on the CO₂/N₂ separation performance of porous graphene membranes.
    Shan M; Xue Q; Jing N; Ling C; Zhang T; Yan Z; Zheng J
    Nanoscale; 2012 Sep; 4(17):5477-82. PubMed ID: 22850863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Sieving Across Centimeter-Scale Single-Layer Nanoporous Graphene Membranes.
    Boutilier MSH; Jang D; Idrobo JC; Kidambi PR; Hadjiconstantinou NG; Karnik R
    ACS Nano; 2017 Jun; 11(6):5726-5736. PubMed ID: 28609103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.