These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 3311884)
21. Nucleotide sequence of the DURM gene coding for a positive regulator of allophanate-inducible genes in Saccharomyces cerevisiae. André B; Jauniaux JC Nucleic Acids Res; 1990 Dec; 18(23):7136. PubMed ID: 2263474 [No Abstract] [Full Text] [Related]
22. Nucleotide sequence of the argR gene of Escherichia coli K-12 and isolation of its product, the arginine repressor. Lim DB; Oppenheim JD; Eckhardt T; Maas WK Proc Natl Acad Sci U S A; 1987 Oct; 84(19):6697-701. PubMed ID: 3116542 [TBL] [Abstract][Full Text] [Related]
23. A master regulatory locus that determines cell specialization in yeast. Herskowitz I Harvey Lect; 1985-1986; 81():67-92. PubMed ID: 3916693 [No Abstract] [Full Text] [Related]
24. Analysis of the inducer-responsive CAR1 upstream activation sequence (UASI) and the factors required for its operation. Kovari LZ; Fourie M; Park HD; Kovari IA; Van Vuuren HJ; Cooper TG Yeast; 1993 Aug; 9(8):835-45. PubMed ID: 8212891 [TBL] [Abstract][Full Text] [Related]
25. Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Burns N; Grimwade B; Ross-Macdonald PB; Choi EY; Finberg K; Roeder GS; Snyder M Genes Dev; 1994 May; 8(9):1087-105. PubMed ID: 7926789 [TBL] [Abstract][Full Text] [Related]
26. A yeast gene important for protein assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an Escherichia coli heat shock protein. Sadler I; Chiang A; Kurihara T; Rothblatt J; Way J; Silver P J Cell Biol; 1989 Dec; 109(6 Pt 1):2665-75. PubMed ID: 2556404 [TBL] [Abstract][Full Text] [Related]
27. Regulatory proteins in yeast. Guarente L Annu Rev Genet; 1987; 21():425-52. PubMed ID: 3327472 [No Abstract] [Full Text] [Related]
28. The human homologue of yeast ArgRIII protein is an inositol phosphate multikinase with predominantly nuclear localization. Nalaskowski MM; Deschermeier C; Fanick W; Mayr GW Biochem J; 2002 Sep; 366(Pt 2):549-56. PubMed ID: 12027805 [TBL] [Abstract][Full Text] [Related]
29. Cloning and characterization of argR, a gene that participates in regulation of arginine biosynthesis and catabolism in Pseudomonas aeruginosa PAO1. Park SM; Lu CD; Abdelal AT J Bacteriol; 1997 Sep; 179(17):5300-8. PubMed ID: 9286980 [TBL] [Abstract][Full Text] [Related]
30. Nucleotide sequence of the ARGRII regulatory gene and amino acid sequence homologies between ARGRII PPRI and GAL4 regulatory proteins. Messenguy F; Dubois E; Descamps F Eur J Biochem; 1986 May; 157(1):77-81. PubMed ID: 3709534 [TBL] [Abstract][Full Text] [Related]
31. Intracellular location of the Saccharomyces cerevisiae CDC6 gene product. Jong A; Young M; Chen GC; Zhang SQ; Chan C DNA Cell Biol; 1996 Oct; 15(10):883-95. PubMed ID: 8892760 [TBL] [Abstract][Full Text] [Related]
32. Identification of a sequence containing the positive regulatory region of Saccharomyces cerevisiae gene ENO1. Uemura H; Shiba T; Paterson M; Jigami Y; Tanaka H Gene; 1986; 45(1):67-75. PubMed ID: 3536667 [TBL] [Abstract][Full Text] [Related]
33. Chs7p, a new protein involved in the control of protein export from the endoplasmic reticulum that is specifically engaged in the regulation of chitin synthesis in Saccharomyces cerevisiae. Trilla JA; Durán A; Roncero C J Cell Biol; 1999 Jun; 145(6):1153-63. PubMed ID: 10366589 [TBL] [Abstract][Full Text] [Related]
34. Negative control at a distance mediates catabolite repression in yeast. Struhl K Nature; 1985 Oct 31-Nov 6; 317(6040):822-4. PubMed ID: 3903516 [TBL] [Abstract][Full Text] [Related]
35. Translation and stability of an Escherichia coli beta-galactosidase mRNA expressed under the control of pyruvate kinase sequences in Saccharomyces cerevisiae. Purvis IJ; Loughlin L; Bettany AJ; Brown AJ Nucleic Acids Res; 1987 Oct; 15(19):7963-74. PubMed ID: 2444925 [TBL] [Abstract][Full Text] [Related]
36. Molecular cloning of the GAL80 gene from Saccharomyces cerevisiae and characterization of a gal80 deletion. Yocum RR; Johnston M Gene; 1984 Dec; 32(1-2):75-82. PubMed ID: 6397403 [TBL] [Abstract][Full Text] [Related]
37. The arginine regulatory protein mediates repression by arginine of the operons encoding glutamate synthase and anabolic glutamate dehydrogenase in Pseudomonas aeruginosa. Hashim S; Kwon DH; Abdelal A; Lu CD J Bacteriol; 2004 Jun; 186(12):3848-54. PubMed ID: 15175298 [TBL] [Abstract][Full Text] [Related]
38. Precise mapping and molecular characterization of the MFT1 gene involved in import of a fusion protein into mitochondria in Saccharomyces cerevisiae. Ito M; Yasui A; Komamine A FEBS Lett; 1993 Apr; 320(2):125-9. PubMed ID: 8458428 [TBL] [Abstract][Full Text] [Related]
39. Negative regulatory elements of the Saccharomyces cerevisiae PHO system: interaction between PHO80 and PHO85 proteins. Gilliquet V; Legrain M; Berben G; Hilger F Gene; 1990 Dec; 96(2):181-8. PubMed ID: 2269431 [TBL] [Abstract][Full Text] [Related]
40. Arginine regulon control in a Salmonella typhimurium--Escherichia coli hybrid merodiploid. Kelln RA; Zak VL Mol Gen Genet; 1978 May; 161(3):333-5. PubMed ID: 353519 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]