These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 33119126)

  • 1. Deep learning algorithms for brain disease detection with magnetic induction tomography.
    Chen R; Huang J; Song Y; Li B; Wang J; Wang H
    Med Phys; 2021 Feb; 48(2):745-759. PubMed ID: 33119126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid diagnosis and continuous monitoring of intracerebral hemorrhage with magnetic induction tomography based on stacked autoencoder.
    Chen R; Song Y; Huang J; Wang J; Sun H; Wang H
    Rev Sci Instrum; 2021 Aug; 92(8):084707. PubMed ID: 34470442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Space-constrained optimized Tikhonov regularization method for 3D hemorrhage reconstruction by open magnetic induction tomography.
    Chen Y; Dong F; Tan C
    Phys Med Biol; 2022 Nov; 67(22):. PubMed ID: 36317273
    [No Abstract]   [Full Text] [Related]  

  • 4. Adaptive threshold split Bregman algorithm based on magnetic induction tomography for brain injury monitoring imaging.
    Zhang T; Liu X; Zhang W; Dai M; Chen C; Dong X; Liu R; Xu C
    Physiol Meas; 2021 Jun; 42(6):. PubMed ID: 34044378
    [No Abstract]   [Full Text] [Related]  

  • 5. Deep Learning Reconstruction at CT: Phantom Study of the Image Characteristics.
    Higaki T; Nakamura Y; Zhou J; Yu Z; Nemoto T; Tatsugami F; Awai K
    Acad Radiol; 2020 Jan; 27(1):82-87. PubMed ID: 31818389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image Reconstruction with the Fourier Coefficients for Magnetic Induction Tomography.
    Wang J; Wang X; Yang D; Wang K
    Curr Med Imaging Rev; 2020; 16(2):156-163. PubMed ID: 32003316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.
    Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH
    Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image reconstruction for positron emission tomography based on patch-based regularization and dictionary learning.
    Zhang W; Gao J; Yang Y; Liang D; Liu X; Zheng H; Hu Z
    Med Phys; 2019 Nov; 46(11):5014-5026. PubMed ID: 31494950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional convolutional neural networks for simultaneous dual-tracer PET imaging.
    Xu J; Liu H
    Phys Med Biol; 2019 Sep; 64(18):185016. PubMed ID: 31292287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-frequency difference method for intracranial hemorrhage detection by magnetic induction tomography.
    Xiao Z; Tan C; Dong F
    Physiol Meas; 2018 May; 39(5):055006. PubMed ID: 29701181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Object recognition in medical images via anatomy-guided deep learning.
    Jin C; Udupa JK; Zhao L; Tong Y; Odhner D; Pednekar G; Nag S; Lewis S; Poole N; Mannikeri S; Govindasamy S; Singh A; Camaratta J; Owens S; Torigian DA
    Med Image Anal; 2022 Oct; 81():102527. PubMed ID: 35830745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of the backprojection method for reconstruction of low contrast perturbations in a conducting background in magnetic induction tomography.
    Korjenevsky AV; Sapetsky SA
    Physiol Meas; 2017 Jun; 38(6):1204-1213. PubMed ID: 28282027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment.
    Yoo TK; Choi JY; Seo JG; Ramasubramanian B; Selvaperumal S; Kim DW
    Med Biol Eng Comput; 2019 Mar; 57(3):677-687. PubMed ID: 30349958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced iteration image reconstruction of incomplete projection CT using regularization strategy through Lp norm dictionary learning.
    Gou J; Wu X; Dong H
    J Xray Sci Technol; 2019; 27(3):559-572. PubMed ID: 31177257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Open structure magnetic particle imaging by nonlinear back projection tomography reconstruction.
    Zu W; Ke L; Du Q
    Biomed Tech (Berl); 2023 Apr; 68(2):199-210. PubMed ID: 36579426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial intelligence in image reconstruction: The change is here.
    Singh R; Wu W; Wang G; Kalra MK
    Phys Med; 2020 Nov; 79():113-125. PubMed ID: 33246273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CT artifact correction for sparse and truncated projection data using generative adversarial networks.
    Podgorsak AR; Shiraz Bhurwani MM; Ionita CN
    Med Phys; 2021 Feb; 48(2):615-626. PubMed ID: 32996149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of MR head coil geometry on deep-learning-based MR image reconstruction.
    Dubljevic N; Moore S; Lauzon ML; Souza R; Frayne R
    Magn Reson Med; 2024 Oct; 92(4):1404-1420. PubMed ID: 38647191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction.
    Madesta F; Sentker T; Gauer T; Werner R
    Med Phys; 2020 Nov; 47(11):5619-5631. PubMed ID: 33063329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super-resolution reconstruction of knee magnetic resonance imaging based on deep learning.
    Qiu D; Zhang S; Liu Y; Zhu J; Zheng L
    Comput Methods Programs Biomed; 2020 Apr; 187():105059. PubMed ID: 31582263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.