These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33119249)

  • 1. Charge-Carrier Dynamics at the CuWO
    Shadabipour P; Raithel AL; Hamann TW
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50592-50599. PubMed ID: 33119249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.
    Lhermitte CR; Bartlett BM
    Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature of Charge Carrier Recombination in CuWO
    Grigioni I; Polo A; Nomellini C; Vigni L; Poma A; Dozzi MV; Selli E
    ACS Appl Energy Mater; 2023 Oct; 6(19):10020-10029. PubMed ID: 37830012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CuWO4 Nanoflake Array-Based Single-Junction and Heterojunction Photoanodes for Photoelectrochemical Water Oxidation.
    Ye W; Chen F; Zhao F; Han N; Li Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9211-7. PubMed ID: 27011376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ternary Oxide CuWO
    Rosa WS; Rabelo LG; Tiveron Zampaulo LG; Gonçalves RV
    ACS Appl Mater Interfaces; 2022 Jan; ():. PubMed ID: 35021014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast Charge Carrier Dynamics in CuWO
    Grigioni I; Polo A; Dozzi MV; Ganzer L; Bozzini B; Cerullo G; Selli E
    J Phys Chem C Nanomater Interfaces; 2021 Mar; 125(10):5692-5699. PubMed ID: 35069964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved photoelectrochemical water oxidation by the WO3/CuWO4 composite with a manganese phosphate electrocatalyst.
    Nam KM; Cheon EA; Shin WJ; Bard AJ
    Langmuir; 2015 Oct; 31(39):10897-903. PubMed ID: 26371544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial repairing of semiconductor-electrocatalyst interfaces for efficient photoelectrochemical water oxidation.
    Zhao H; Ning X; Wang Z; Du P; Zhang R; He Y; Lu X
    J Colloid Interface Sci; 2022 Jun; 615():318-326. PubMed ID: 35144232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An MnNCN-Derived Electrocatalyst for CuWO
    Davi M; Mann M; Ma Z; Schrader F; Drichel A; Budnyk S; Rokicinska A; Kustrowski P; Dronskowski R; Slabon A
    Langmuir; 2018 Apr; 34(13):3845-3852. PubMed ID: 29554428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting.
    Nellist MR; Laskowski FA; Lin F; Mills TJ; Boettcher SW
    Acc Chem Res; 2016 Apr; 49(4):733-40. PubMed ID: 27035051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterning of BiVO
    Chen S; Prins S; Chen A
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):18065-18073. PubMed ID: 32195563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper(II) tungstate nanoflake array films: sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting.
    Hu D; Diao P; Xu D; Xia M; Gu Y; Wu Q; Li C; Yang S
    Nanoscale; 2016 Mar; 8(11):5892-901. PubMed ID: 26912373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the Transition-Metal Hydroxide Cover Layer for Enhancing Photoelectrochemical Water Oxidation.
    Ning X; Du P; Han Z; Chen J; Lu X
    Angew Chem Int Ed Engl; 2021 Feb; 60(7):3504-3509. PubMed ID: 33105064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidation of CuWO
    Gao Y; Hamann TW
    J Phys Chem Lett; 2017 Jun; 8(12):2700-2704. PubMed ID: 28586226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oriented CuWO
    Chen L; Li W; Qiu W; He G; Wang K; Liu Y; Wu Q; Li J
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47737-47746. PubMed ID: 36228181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct in Situ Measurement of Charge Transfer Processes During Photoelectrochemical Water Oxidation on Catalyzed Hematite.
    Qiu J; Hajibabaei H; Nellist MR; Laskowski FAL; Hamann TW; Boettcher SW
    ACS Cent Sci; 2017 Sep; 3(9):1015-1025. PubMed ID: 28979943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ni(II)-doped CuWO
    Nomellini C; Polo A; Grigioni I; Marra G; Dozzi MV; Selli E
    Photochem Photobiol Sci; 2023 Dec; 22(12):2759-2768. PubMed ID: 37831332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface and surface engineering of hematite photoanode for efficient solar water oxidation.
    Chen X; Fu Y; Hong L; Kong T; Shi X; Wang G; Qu L; Shen S
    J Chem Phys; 2020 Jun; 152(24):244707. PubMed ID: 32610948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Balancing Catalytic Activity and Interface Energetics of Electrocatalyst-Coated Photoanodes for Photoelectrochemical Water Splitting.
    Xu Z; Wang H; Wen Y; Li W; Sun C; He Y; Shi Z; Pei L; Chen Y; Yan S; Zou Z
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3624-3633. PubMed ID: 29308871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO(4) photoanodes.
    Parmar KP; Kang HJ; Bist A; Dua P; Jang JS; Lee JS
    ChemSusChem; 2012 Oct; 5(10):1926-34. PubMed ID: 22927058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.