These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33119268)

  • 1. Underwater Superoleophobic Matrix-Formatted Liquid-Infused Porous Biomembranes for Extremely Efficient Deconstitution of Nanoemulsions.
    Ashrafi Z; Lucia L; Krause W
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50996-51006. PubMed ID: 33119268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature.
    Wang B; Liang W; Guo Z; Liu W
    Chem Soc Rev; 2015 Jan; 44(1):336-61. PubMed ID: 25311259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of Organic Pollutants from Water Using Superwetting Materials.
    Li L; Zhang J; Wang A
    Chem Rec; 2018 Feb; 18(2):118-136. PubMed ID: 28766897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature.
    Sun Y; Guo Z
    Nanoscale Horiz; 2019 Jan; 4(1):52-76. PubMed ID: 32254145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions.
    Zhang W; Zhu Y; Liu X; Wang D; Li J; Jiang L; Jin J
    Angew Chem Int Ed Engl; 2014 Jan; 53(3):856-60. PubMed ID: 24307602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable and antibacterial sandwich-like Ag-Pulp/CNF composite paper for oil/water separation.
    Zhu W; Huang W; Zhou W; Qiu Z; Wang Z; Li H; Wang Y; Li J; Xie Y
    Carbohydr Polym; 2020 Oct; 245():116587. PubMed ID: 32718655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose-based special wetting materials for oil/water separation: A review.
    Zhao XQ; Wahid F; Cui JX; Wang YY; Zhong C
    Int J Biol Macromol; 2021 Aug; 185():890-906. PubMed ID: 34214576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial Superoleophobic Fibrous Matrices: A Naturally Occurring Liquid-Infused System for Oil-Water Separation.
    Ashrafi Z; Hu Z; Lucia L; Krause W
    Langmuir; 2021 Mar; 37(8):2552-2562. PubMed ID: 33605736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity.
    Jung YC; Bhushan B
    Langmuir; 2009 Dec; 25(24):14165-73. PubMed ID: 19637877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery.
    Yan H; Chen X; Feng M; Shi Z; Zhang W; Wang Y; Ke C; Lin Q
    Colloids Surf B Biointerfaces; 2019 May; 177():112-120. PubMed ID: 30716696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic cellulose-nanocrystalline-based composite membrane with high flux for efficient purification of oil-in-water emulsions.
    Wu J; Cui Z; Su Y; Yu Y; Yue B; Hu J; Qu J; Tian D; Zhan X; Li J; Cai Y
    J Hazard Mater; 2023 Mar; 446():130729. PubMed ID: 36621295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of trapped air and lubricant in the interactions between fouling and SiO
    He X; Tian F; Bai X; Yuan C
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110502. PubMed ID: 31542644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Special Superwetting Materials from Bioinspired to Intelligent Surface for On-Demand Oil/Water Separation: A Comprehensive Review.
    Yang Y; Guo Z; Liu W
    Small; 2022 Dec; 18(48):e2204624. PubMed ID: 36192169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of nanocellulose with different length from ginkgo seed shells and applications for oil in water Pickering emulsions.
    Ni Y; Li J; Fan L
    Int J Biol Macromol; 2020 Apr; 149():617-626. PubMed ID: 32001288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired surfaces with wettability for antifouling application.
    Li Z; Guo Z
    Nanoscale; 2019 Dec; 11(47):22636-22663. PubMed ID: 31755511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic composite scaffolds based on mineralization of hydroxyapatite on electrospun poly(ɛ-caprolactone)/nanocellulose fibers.
    Si J; Cui Z; Wang Q; Liu Q; Liu C
    Carbohydr Polym; 2016 Jun; 143():270-8. PubMed ID: 27083369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superwetting materials for hydrophilic-oleophobic membrane in oily wastewater treatment.
    Wan Ikhsan SN; Yusof N; Aziz F; Ismail AF; Jaafar J; Wan Salleh WN; Misdan N
    J Environ Manage; 2021 Jul; 290():112565. PubMed ID: 33873023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired Interfaces with Superwettability: From Materials to Chemistry.
    Su B; Tian Y; Jiang L
    J Am Chem Soc; 2016 Feb; 138(6):1727-48. PubMed ID: 26652501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of surface wettability based on nanoparticles.
    Gao N; Yan Y
    Nanoscale; 2012 Apr; 4(7):2202-18. PubMed ID: 22392411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions.
    Zhou K; Zhang QG; Li HM; Guo NN; Zhu AM; Liu QL
    Nanoscale; 2014 Sep; 6(17):10363-9. PubMed ID: 25073443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.