These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 33119515)
1. Using BI-RADS Stratifications as Auxiliary Information for Breast Masses Classification in Ultrasound Images. Xing J; Chen C; Lu Q; Cai X; Yu A; Xu Y; Xia X; Sun Y; Xiao J; Huang L IEEE J Biomed Health Inform; 2021 Jun; 25(6):2058-2070. PubMed ID: 33119515 [TBL] [Abstract][Full Text] [Related]
2. Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making. Ciritsis A; Rossi C; Eberhard M; Marcon M; Becker AS; Boss A Eur Radiol; 2019 Oct; 29(10):5458-5468. PubMed ID: 30927100 [TBL] [Abstract][Full Text] [Related]
3. Segmentation-based BI-RADS ensemble classification of breast tumours in ultrasound images. Bobowicz M; Badocha M; Gwozdziewicz K; Rygusik M; Kalinowska P; Szurowska E; Dziubich T Int J Med Inform; 2024 Sep; 189():105522. PubMed ID: 38852288 [TBL] [Abstract][Full Text] [Related]
4. Classification of multi-feature fusion ultrasound images of breast tumor within category 4 using convolutional neural networks. Xu P; Zhao J; Wan M; Song Q; Su Q; Wang D Med Phys; 2024 Jun; 51(6):4243-4257. PubMed ID: 38436433 [TBL] [Abstract][Full Text] [Related]
5. The uncertainty of boundary can improve the classification accuracy of BI-RADS 4A ultrasound image. Wang H; Hu Y; Lu Y; Zhou J; Guo Y Med Phys; 2022 May; 49(5):3314-3324. PubMed ID: 35261034 [TBL] [Abstract][Full Text] [Related]
6. Fully automatic classification of automated breast ultrasound (ABUS) imaging according to BI-RADS using a deep convolutional neural network. Hejduk P; Marcon M; Unkelbach J; Ciritsis A; Rossi C; Borkowski K; Boss A Eur Radiol; 2022 Jul; 32(7):4868-4878. PubMed ID: 35147776 [TBL] [Abstract][Full Text] [Related]
7. A combined ultrasonic B-mode and color Doppler system for the classification of breast masses using neural network. Qian X; Zhang B; Liu S; Wang Y; Chen X; Liu J; Yang Y; Chen X; Wei Y; Xiao Q; Ma J; Shung KK; Zhou Q; Liu L; Chen Z Eur Radiol; 2020 May; 30(5):3023-3033. PubMed ID: 32006174 [TBL] [Abstract][Full Text] [Related]
8. FMRNet: A fused network of multiple tumoral regions for breast tumor classification with ultrasound images. Cui W; Peng Y; Yuan G; Cao W; Cao Y; Lu Z; Ni X; Yan Z; Zheng J Med Phys; 2022 Jan; 49(1):144-157. PubMed ID: 34766623 [TBL] [Abstract][Full Text] [Related]
9. Automated BI-RADS classification of lesions using pyramid triple deep feature generator technique on breast ultrasound images. Kaplan E; Chan WY; Dogan S; Barua PD; Bulut HT; Tuncer T; Cizik M; Tan RS; Acharya UR Med Eng Phys; 2022 Oct; 108():103895. PubMed ID: 36195364 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning Networks for Breast Lesion Classification in Ultrasound Images: A Comparative Study. Ferreira MR; Torres HR; Oliveira B; de Araujo ARVF; Morais P; Novais P; Vilaca JL Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083151 [TBL] [Abstract][Full Text] [Related]
11. Two-stage CNNs for computerized BI-RADS categorization in breast ultrasound images. Huang Y; Han L; Dou H; Luo H; Yuan Z; Liu Q; Zhang J; Yin G Biomed Eng Online; 2019 Jan; 18(1):8. PubMed ID: 30678680 [TBL] [Abstract][Full Text] [Related]
12. Ultrasound-based deep learning in the establishment of a breast lesion risk stratification system: a multicenter study. Gu Y; Xu W; Liu T; An X; Tian J; Ran H; Ren W; Chang C; Yuan J; Kang C; Deng Y; Wang H; Luo B; Guo S; Zhou Q; Xue E; Zhan W; Zhou Q; Li J; Zhou P; Chen M; Gu Y; Chen W; Zhang Y; Li J; Cong L; Zhu L; Wang H; Jiang Y Eur Radiol; 2023 Apr; 33(4):2954-2964. PubMed ID: 36418619 [TBL] [Abstract][Full Text] [Related]
13. CAM-QUS guided self-tuning modular CNNs with multi-loss functions for fully automated breast lesion classification in ultrasound images. Tasnim J; Hasan MK Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38056017 [No Abstract] [Full Text] [Related]
14. A computer-aided diagnosis system for breast ultrasound based on weighted BI-RADS classes. Rodríguez-Cristerna A; Gómez-Flores W; de Albuquerque Pereira WC Comput Methods Programs Biomed; 2018 Jan; 153():33-40. PubMed ID: 29157459 [TBL] [Abstract][Full Text] [Related]
15. Classification of Breast Masses on Ultrasound Shear Wave Elastography using Convolutional Neural Networks. Fujioka T; Katsuta L; Kubota K; Mori M; Kikuchi Y; Kato A; Oda G; Nakagawa T; Kitazume Y; Tateishi U Ultrason Imaging; 2020; 42(4-5):213-220. PubMed ID: 32501152 [TBL] [Abstract][Full Text] [Related]
16. Differential Diagnosis of Breast Category 3 and 4 Nodules Through BI-RADS Classification in Conjunction with Shear Wave Elastography. Wang M; Yang Z; Liu C; Yan J; Zhang W; Sun J; Cui G Ultrasound Med Biol; 2017 Mar; 43(3):601-606. PubMed ID: 27988221 [TBL] [Abstract][Full Text] [Related]
17. [Diagnostic value of contrast-enhanced ultrasound in breast lesions of BI-RADS 4]. Liang YC; Jia CM; Xue Y; Lü Q; Chen F; Wang JJ Zhonghua Yi Xue Za Zhi; 2018 May; 98(19):1498-1502. PubMed ID: 29804418 [No Abstract] [Full Text] [Related]
18. The Diagnostic Value of 3D Power Doppler Ultrasound Combined With VOCAL in the Vascular Distribution of Breast Masses. Wang H; Yan B; Yue L; He M; Liu Y; Li H Acad Radiol; 2020 Feb; 27(2):198-203. PubMed ID: 31053481 [TBL] [Abstract][Full Text] [Related]
19. Incorporating Contrast-Enhanced Ultrasound into the BI-RADS Scoring System Improves Accuracy in Breast Tumor Diagnosis: A Preliminary Study in China. Xiao X; Dong L; Jiang Q; Guan X; Wu H; Luo B Ultrasound Med Biol; 2016 Nov; 42(11):2630-2638. PubMed ID: 27544439 [TBL] [Abstract][Full Text] [Related]
20. A deep learning-based method for the detection and segmentation of breast masses in ultrasound images. Li W; Ye X; Chen X; Jiang X; Yang Y Phys Med Biol; 2024 Jul; 69(15):. PubMed ID: 38986480 [No Abstract] [Full Text] [Related] [Next] [New Search]