These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33119520)

  • 1. Neural-Network-Based Adaptive Singularity-Free Fixed-Time Attitude Tracking Control for Spacecrafts.
    Chen Q; Xie S; He X
    IEEE Trans Cybern; 2021 Oct; 51(10):5032-5045. PubMed ID: 33119520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-Time Attitude Tracking Control for Spacecraft Using Terminal Sliding Mode and Chebyshev Neural Network.
    An-Min Zou ; Kumar KD; Zeng-Guang Hou ; Xi Liu
    IEEE Trans Syst Man Cybern B Cybern; 2011 Aug; 41(4):950-63. PubMed ID: 21266316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RBFNN-Based Singularity-Free Terminal Sliding Mode Control for Uncertain Quadrotor UAVs.
    Tao M; He X; Xie S; Chen Q
    Comput Intell Neurosci; 2021; 2021():3576783. PubMed ID: 34456992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive fixed-time sliding mode control for spacecraft reorientation with attitude pointing constraints and disturbance rejection.
    Guan T; Zhang K; Li B; Guan X; Yiu KC
    ISA Trans; 2023 Dec; 143():50-58. PubMed ID: 37806819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.
    Zou AM; Dev Kumar K; Hou ZG
    IEEE Trans Neural Netw; 2010 Sep; 21(9):1457-71. PubMed ID: 20729168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indirect-Neural-Approximation-Based Fault-Tolerant Integrated Attitude and Position Control of Spacecraft Proximity Operations.
    Alsaade FW; Yao Q; Al-Zahrani MS; Alzahrani AS; Jahanshahi H
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonsingular fixed-time attitude coordinated tracking control for multiple rigid spacecraft.
    Tian Y; Du C; Lu P; Jiang Q; Liu H
    ISA Trans; 2022 Oct; 129(Pt B):243-256. PubMed ID: 35248367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural-Network-Based Adaptive Finite-Time Output Feedback Control for Spacecraft Attitude Tracking.
    Zhao L; Yu J; Chen X
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):8116-8123. PubMed ID: 35108211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fixed-Time Adaptive Neural Network Control for Nonlinear Systems With Input Saturation.
    Sun W; Diao S; Su SF; Sun ZY
    IEEE Trans Neural Netw Learn Syst; 2023 Apr; 34(4):1911-1920. PubMed ID: 34464271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Event-Triggered Finite-Time Attitude Cooperative Control for Multiple Unmanned Aerial Vehicles.
    Han Q; Zhou Y; Liu X; Tuo X
    Appl Bionics Biomech; 2022; 2022():5875004. PubMed ID: 35237345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural networks-based adaptive control for nonlinear time-varying delays systems with unknown control direction.
    Wen Y; Ren X
    IEEE Trans Neural Netw; 2011 Oct; 22(10):1599-612. PubMed ID: 21880569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust adaptive control for a class of uncertain nonlinear systems with time-varying delay.
    Wang R; Li J; Zhang S; Gao D; Sun H
    ScientificWorldJournal; 2013; 2013():963986. PubMed ID: 23853544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fixed-time fault-tolerant attitude control for flexible spacecraft without angular velocity sensor.
    Hasan MN; Chen Y; Liang J; Wen A
    ISA Trans; 2024 Mar; 146():87-98. PubMed ID: 38129245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully Adaptive-Gain-Based Intelligent Failure-Tolerant Control for Spacecraft Attitude Stabilization Under Actuator Saturation.
    Zhou N; Cheng X; Xia Y; Liu Y
    IEEE Trans Cybern; 2022 Jan; 52(1):344-356. PubMed ID: 32149666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attitude output feedback control for rigid spacecraft with finite-time convergence.
    Hu Q; Niu G
    ISA Trans; 2017 Sep; 70():173-186. PubMed ID: 28789773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive disturbance observer-based dual-loop integral-type fast terminal sliding mode control for micro spacecraft and its gimbal tracking device.
    Zhang L; Nan H; Zhao Z; Yuan Y
    ISA Trans; 2022 Nov; 130():121-135. PubMed ID: 35361485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-Time Stability Control of Uncertain Nonlinear Systems With Self-Limiting Control Terms.
    Zhu J; Yang Y; Zhang T; Cao Z
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):9514-9519. PubMed ID: 35235522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel body frame based approach to aerospacecraft attitude tracking.
    Ma C; Chen MZQ; Lam J; Cheung KC
    ISA Trans; 2017 Sep; 70():228-237. PubMed ID: 28619477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practical fractional-order nonsingular terminal sliding mode control of spacecraft.
    Alipour M; Malekzadeh M; Ariaei A
    ISA Trans; 2022 Sep; 128(Pt A):162-173. PubMed ID: 34763885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fixed-time attitude stabilization for a rigid spacecraft.
    Du H; Zhang J; Wu D; Zhu W; Li H; Chu Z
    ISA Trans; 2020 Mar; 98():263-270. PubMed ID: 31451232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.