BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 33119549)

  • 41. Kruppel-like factor 4 contributes to high phosphate-induced phenotypic switching of vascular smooth muscle cells into osteogenic cells.
    Yoshida T; Yamashita M; Hayashi M
    J Biol Chem; 2012 Jul; 287(31):25706-14. PubMed ID: 22679022
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alcohol Reduces Arterial Remodeling by Inhibiting Sonic Hedgehog-Stimulated Stem Cell Antigen-1 Positive Progenitor Stem Cell Expansion.
    Fitzpatrick E; Han X; Liu W; Corcoran E; Burtenshaw D; Morrow D; Helt JC; Cahill PA; Redmond EM
    Alcohol Clin Exp Res; 2017 Dec; 41(12):2051-2065. PubMed ID: 28921619
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DKK3 (Dickkopf 3) Alters Atherosclerotic Plaque Phenotype Involving Vascular Progenitor and Fibroblast Differentiation Into Smooth Muscle Cells.
    Karamariti E; Zhai C; Yu B; Qiao L; Wang Z; Potter CMF; Wong MM; Simpson RML; Zhang Z; Wang X; Del Barco Barrantes I; Niehrs C; Kong D; Zhao Q; Zhang Y; Hu Y; Zhang C; Xu Q
    Arterioscler Thromb Vasc Biol; 2018 Feb; 38(2):425-437. PubMed ID: 29284609
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of a Klf4-dependent upstream repressor region mediating transcriptional regulation of the myocardin gene in human smooth muscle cells.
    Turner EC; Huang CL; Govindarajan K; Caplice NM
    Biochim Biophys Acta; 2013 Nov; 1829(11):1191-201. PubMed ID: 24060351
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro.
    Pidkovka NA; Cherepanova OA; Yoshida T; Alexander MR; Deaton RA; Thomas JA; Leitinger N; Owens GK
    Circ Res; 2007 Oct; 101(8):792-801. PubMed ID: 17704209
    [TBL] [Abstract][Full Text] [Related]  

  • 46. FGF12 (Fibroblast Growth Factor 12) Inhibits Vascular Smooth Muscle Cell Remodeling in Pulmonary Arterial Hypertension.
    Yeo Y; Yi ES; Kim JM; Jo EK; Seo S; Kim RI; Kim KL; Sung JH; Park SG; Suh W
    Hypertension; 2020 Dec; 76(6):1778-1786. PubMed ID: 33100045
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vascular smooth muscle cell-derived transforming growth factor-β promotes maturation of activated, neointima lesion-like macrophages.
    Ostriker A; Horita HN; Poczobutt J; Weiser-Evans MC; Nemenoff RA
    Arterioscler Thromb Vasc Biol; 2014 Apr; 34(4):877-86. PubMed ID: 24526697
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Smooth muscle cell-specific knockout of neuropilin-1 impairs postnatal lung development and pathological vascular smooth muscle cell accumulation.
    Mahmoud M; Evans IM; Mehta V; Pellet-Many C; Paliashvili K; Zachary I
    Am J Physiol Cell Physiol; 2019 Mar; 316(3):C424-C433. PubMed ID: 30649916
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The induction of yes-associated protein expression after arterial injury is crucial for smooth muscle phenotypic modulation and neointima formation.
    Wang X; Hu G; Gao X; Wang Y; Zhang W; Harmon EY; Zhi X; Xu Z; Lennartz MR; Barroso M; Trebak M; Chen C; Zhou J
    Arterioscler Thromb Vasc Biol; 2012 Nov; 32(11):2662-9. PubMed ID: 22922963
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mitochondrial Protein Poldip2 (Polymerase Delta Interacting Protein 2) Controls Vascular Smooth Muscle Differentiated Phenotype by O-Linked GlcNAc (N-Acetylglucosamine) Transferase-Dependent Inhibition of a Ubiquitin Proteasome System.
    Paredes F; Williams HC; Quintana RA; San Martin A
    Circ Res; 2020 Jan; 126(1):41-56. PubMed ID: 31656131
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Msx2 and necdin combined activities are required for smooth muscle differentiation in mesoangioblast stem cells.
    Brunelli S; Tagliafico E; De Angelis FG; Tonlorenzi R; Baesso S; Ferrari S; Niinobe M; Yoshikawa K; Schwartz RJ; Bozzoni I; Ferrari S; Cossu G
    Circ Res; 2004 Jun; 94(12):1571-8. PubMed ID: 15155529
    [TBL] [Abstract][Full Text] [Related]  

  • 52. TNF-α induces phenotypic modulation in cerebral vascular smooth muscle cells: implications for cerebral aneurysm pathology.
    Ali MS; Starke RM; Jabbour PM; Tjoumakaris SI; Gonzalez LF; Rosenwasser RH; Owens GK; Koch WJ; Greig NH; Dumont AS
    J Cereb Blood Flow Metab; 2013 Oct; 33(10):1564-73. PubMed ID: 23860374
    [TBL] [Abstract][Full Text] [Related]  

  • 53. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis.
    Shankman LS; Gomez D; Cherepanova OA; Salmon M; Alencar GF; Haskins RM; Swiatlowska P; Newman AA; Greene ES; Straub AC; Isakson B; Randolph GJ; Owens GK
    Nat Med; 2015 Jun; 21(6):628-37. PubMed ID: 25985364
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension.
    Stenmark KR; Frid MG; Graham BB; Tuder RM
    Cardiovasc Res; 2018 Mar; 114(4):551-564. PubMed ID: 29385432
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antiproliferative effect of estrogen in vascular smooth muscle cells is mediated by Kruppel-like factor-4 and manganese superoxide dismutase.
    Sivritas D; Becher MU; Ebrahimian T; Arfa O; Rapp S; Bohner A; Mueller CF; Umemura T; Wassmann S; Nickenig G; Wassmann K
    Basic Res Cardiol; 2011 Jun; 106(4):563-75. PubMed ID: 21484412
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sirolimus stimulates vascular stem/progenitor cell migration and differentiation into smooth muscle cells via epidermal growth factor receptor/extracellular signal-regulated kinase/β-catenin signaling pathway.
    Wong MM; Winkler B; Karamariti E; Wang X; Yu B; Simpson R; Chen T; Margariti A; Xu Q
    Arterioscler Thromb Vasc Biol; 2013 Oct; 33(10):2397-406. PubMed ID: 23928863
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Smooth muscle cells differentiated from reprogrammed embryonic lung fibroblasts through DKK3 signaling are potent for tissue engineering of vascular grafts.
    Karamariti E; Margariti A; Winkler B; Wang X; Hong X; Baban D; Ragoussis J; Huang Y; Han JD; Wong MM; Sag CM; Shah AM; Hu Y; Xu Q
    Circ Res; 2013 May; 112(11):1433-43. PubMed ID: 23529184
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The loss of Krüppel-like factor 15 in Foxd1
    Gu X; Mallipattu SK; Guo Y; Revelo MP; Pace J; Miller T; Gao X; Jain MK; Bialkowska AB; Yang VW; He JC; Mei C
    Kidney Int; 2017 Nov; 92(5):1178-1193. PubMed ID: 28651950
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PTEN deficiency promotes pathological vascular remodeling of human coronary arteries.
    Moulton KS; Li M; Strand K; Burgett S; McClatchey P; Tucker R; Furgeson SB; Lu S; Kirkpatrick B; Cleveland JC; Nemenoff RA; Ambardekar AV; Weiser-Evans MC
    JCI Insight; 2018 Feb; 3(4):. PubMed ID: 29467331
    [TBL] [Abstract][Full Text] [Related]  

  • 60. C/EBP-Homologous Protein (CHOP) in Vascular Smooth Muscle Cells Regulates Their Proliferation in Aortic Explants and Atherosclerotic Lesions.
    Zhou AX; Wang X; Lin CS; Han J; Yong J; Nadolski MJ; Borén J; Kaufman RJ; Tabas I
    Circ Res; 2015 May; 116(11):1736-43. PubMed ID: 25872946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.