These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33119716)

  • 1. Choosing between AR(1) and VAR(1) models in typical psychological applications.
    Dablander F; Ryan O; Haslbeck JMB
    PLoS One; 2020; 15(10):e0240730. PubMed ID: 33119716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VAR(1) based models do not always outpredict AR(1) models in typical psychological applications.
    Bulteel K; Mestdagh M; Tuerlinckx F; Ceulemans E
    Psychol Methods; 2018 Dec; 23(4):740-756. PubMed ID: 29745683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Tutorial on Estimating Time-Varying Vector Autoregressive Models.
    Haslbeck JMB; Bringmann LF; Waldorp LJ
    Multivariate Behav Res; 2021; 56(1):120-149. PubMed ID: 32324066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using cross-validation methods to select time series models: Promises and pitfalls.
    Liu S; Zhou DJ
    Br J Math Stat Psychol; 2024 May; 77(2):337-355. PubMed ID: 38059390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Informing VAR(1) with qualitative dynamical features improves predictive accuracy.
    Loossens T; Dejonckheere E; Tuerlinckx F; Verdonck S
    Psychol Methods; 2021 Dec; 26(6):635-659. PubMed ID: 34582245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Path and Directionality Discovery in Individual Dynamic Models: A Regularized Unified Structural Equation Modeling Approach for Hybrid Vector Autoregression.
    Ye A; Gates KM; Henry TR; Luo L
    Psychometrika; 2021 Jun; 86(2):404-441. PubMed ID: 33840003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Nonstationary Emotion Dynamics in Dyads using a Time-Varying Vector-Autoregressive Model.
    Bringmann LF; Ferrer E; Hamaker EL; Borsboom D; Tuerlinckx F
    Multivariate Behav Res; 2018; 53(3):293-314. PubMed ID: 29505311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Insight into and Prediction of Network Dynamics by Combining VAR and Dimension Reduction.
    Bulteel K; Tuerlinckx F; Brose A; Ceulemans E
    Multivariate Behav Res; 2018; 53(6):853-875. PubMed ID: 30453783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Systematic Study into the Factors that Affect the Predictive Accuracy of Multilevel VAR(1) Models.
    Lafit G; Meers K; Ceulemans E
    Psychometrika; 2022 Jun; 87(2):432-476. PubMed ID: 34724142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of Autoregressive Parameters from Noisy Observations Using Iterated Covariance Updates.
    Moon TK; Gunther JH
    Entropy (Basel); 2020 May; 22(5):. PubMed ID: 33286345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Raw VAR Regression Coefficients to Build Networks can be Misleading.
    Bulteel K; Tuerlinckx F; Brose A; Ceulemans E
    Multivariate Behav Res; 2016; 51(2-3):330-44. PubMed ID: 27028486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process.
    Opgen-Rhein R; Strimmer K
    BMC Bioinformatics; 2007 May; 8 Suppl 2(Suppl 2):S3. PubMed ID: 17493252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating measurement error in n = 1 psychological autoregressive modeling.
    Schuurman NK; Houtveen JH; Hamaker EL
    Front Psychol; 2015; 6():1038. PubMed ID: 26283988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Composites in Analysis of Individual Time Series: Implications for Person-Specific Dynamic Parameters.
    O'Laughlin KD; Liu S; Ferrer E
    Multivariate Behav Res; 2021; 56(3):408-425. PubMed ID: 31983252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clustering Vector Autoregressive Models: Capturing Qualitative Differences in Within-Person Dynamics.
    Bulteel K; Tuerlinckx F; Brose A; Ceulemans E
    Front Psychol; 2016; 7():1540. PubMed ID: 27774077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Explaining general and specific factors in longitudinal, multimethod, and bifactor models: Some caveats and recommendations.
    Koch T; Holtmann J; Bohn J; Eid M
    Psychol Methods; 2018 Sep; 23(3):505-523. PubMed ID: 28737413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of Sparse VAR Models with Artificial Neural Networks for the Analysis of Biosignals.
    Schubert M; Schanze T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4623-4627. PubMed ID: 31946894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A discussion on the robust vector autoregressive models: novel evidence from safe haven assets.
    Chang L; Shi Y
    Ann Oper Res; 2022 Aug; ():1-31. PubMed ID: 35996744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrete- vs. Continuous-Time Modeling of Unequally Spaced Experience Sampling Method Data.
    de Haan-Rietdijk S; Voelkle MC; Keijsers L; Hamaker EL
    Front Psychol; 2017; 8():1849. PubMed ID: 29104554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dealing with Multiple Solutions in Structural Vector Autoregressive Models.
    Beltz AM; Molenaar PC
    Multivariate Behav Res; 2016; 51(2-3):357-73. PubMed ID: 27093380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.