BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 33119742)

  • 1. Predicting single-cell gene expression profiles of imaging flow cytometry data with machine learning.
    Chlis NK; Rausch L; Brocker T; Kranich J; Theis FJ
    Nucleic Acids Res; 2020 Nov; 48(20):11335-11346. PubMed ID: 33119742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of SuperCT for Enhanced Characterization of Single-Cell Transcriptomic Profiles.
    Zhong J; Lin W
    Methods Mol Biol; 2020; 2117():169-177. PubMed ID: 31960378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A practical guide to intelligent image-activated cell sorting.
    Isozaki A; Mikami H; Hiramatsu K; Sakuma S; Kasai Y; Iino T; Yamano T; Yasumoto A; Oguchi Y; Suzuki N; Shirasaki Y; Endo T; Ito T; Hiraki K; Yamada M; Matsusaka S; Hayakawa T; Fukuzawa H; Yatomi Y; Arai F; Di Carlo D; Nakagawa A; Hoshino Y; Hosokawa Y; Uemura S; Sugimura T; Ozeki Y; Nitta N; Goda K
    Nat Protoc; 2019 Aug; 14(8):2370-2415. PubMed ID: 31278398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An open-source solution for advanced imaging flow cytometry data analysis using machine learning.
    Hennig H; Rees P; Blasi T; Kamentsky L; Hung J; Dao D; Carpenter AE; Filby A
    Methods; 2017 Jan; 112():201-210. PubMed ID: 27594698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image3C, a multimodal image-based and label-independent integrative method for single-cell analysis.
    Accorsi A; Box AC; Peuß R; Wood C; Sánchez Alvarado A; Rohner N
    Elife; 2021 Jul; 10():. PubMed ID: 34286692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free cell cycle analysis for high-throughput imaging flow cytometry.
    Blasi T; Hennig H; Summers HD; Theis FJ; Cerveira J; Patterson JO; Davies D; Filby A; Carpenter AE; Rees P
    Nat Commun; 2016 Jan; 7():10256. PubMed ID: 26739115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagnostic Potential of Imaging Flow Cytometry.
    Doan M; Vorobjev I; Rees P; Filby A; Wolkenhauer O; Goldfeld AE; Lieberman J; Barteneva N; Carpenter AE; Hennig H
    Trends Biotechnol; 2018 Jul; 36(7):649-652. PubMed ID: 29395345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer learning with convolutional neural networks for cancer survival prediction using gene-expression data.
    López-García G; Jerez JM; Franco L; Veredas FJ
    PLoS One; 2020; 15(3):e0230536. PubMed ID: 32214348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell type prioritization in single-cell data.
    Skinnider MA; Squair JW; Kathe C; Anderson MA; Gautier M; Matson KJE; Milano M; Hutson TH; Barraud Q; Phillips AA; Foster LJ; La Manno G; Levine AJ; Courtine G
    Nat Biotechnol; 2021 Jan; 39(1):30-34. PubMed ID: 32690972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PXPermute reveals staining importance in multichannel imaging flow cytometry.
    Shetab Boushehri S; Kornivetc A; Winter DJE; Kazeminia S; Essig K; Schmich F; Marr C
    Cell Rep Methods; 2024 Feb; 4(2):100715. PubMed ID: 38412831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning aided single cell image analysis improves understanding of morphometric heterogeneity of human mesenchymal stem cells.
    Mukhopadhyay R; Chandel P; Prasad K; Chakraborty U
    Methods; 2024 May; 225():62-73. PubMed ID: 38490594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging flow cytometry data analysis using convolutional neural network for quantitative investigation of phagocytosis.
    Mochalova EN; Kotov IA; Lifanov DA; Chakraborti S; Nikitin MP
    Biotechnol Bioeng; 2022 Feb; 119(2):626-635. PubMed ID: 34750809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Cytometry: Deep learning with Real-time Inference in Cell Sorting and Flow Cytometry.
    Li Y; Mahjoubfar A; Chen CL; Niazi KR; Pei L; Jalali B
    Sci Rep; 2019 Jul; 9(1):11088. PubMed ID: 31366998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Cell Transcriptome Analysis of T Cells.
    Van Der Byl W; Rizzetto S; Samir J; Cai C; Eltahla AA; Luciani F
    Methods Mol Biol; 2019; 2048():155-205. PubMed ID: 31396939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustering Single-Cell Expression Data Using Random Forest Graphs.
    Pouyan MB; Nourani M
    IEEE J Biomed Health Inform; 2017 Jul; 21(4):1172-1181. PubMed ID: 28113735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementing machine learning methods for imaging flow cytometry.
    Ota S; Sato I; Horisaki R
    Microscopy (Oxf); 2020 Apr; 69(2):61-68. PubMed ID: 32115658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling Cell Type Abundance and Expression in Bulk Tissues with CIBERSORTx.
    Steen CB; Liu CL; Alizadeh AA; Newman AM
    Methods Mol Biol; 2020; 2117():135-157. PubMed ID: 31960376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting Interactive Gene Groups for Single-Cell RNA-Seq Data Based on Co-Expression Network Analysis and Subgraph Learning.
    Ye X; Zhang W; Futamura Y; Sakurai T
    Cells; 2020 Aug; 9(9):. PubMed ID: 32825786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SCITO-seq: single-cell combinatorial indexed cytometry sequencing.
    Hwang B; Lee DS; Tamaki W; Sun Y; Ogorodnikov A; Hartoularos GC; Winters A; Yeung BZ; Nazor KL; Song YS; Chow ED; Spitzer MH; Ye CJ
    Nat Methods; 2021 Aug; 18(8):903-911. PubMed ID: 34354295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.