These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33119852)

  • 21. Electrophysiological and morphological characterization of neuronal microcircuits in acute brain slices using paired patch-clamp recordings.
    Qi G; Radnikow G; Feldmeyer D
    J Vis Exp; 2015 Jan; (95):52358. PubMed ID: 25650985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robust RNA-Seq of aRNA-amplified single cell material collected by patch clamp.
    Kim JMH; Camarena A; Walker C; Lin MY; Wolseley V; Souaiaia T; Thornton M; Grubbs B; Chow RH; Evgrafov OV; Knowles JA
    Sci Rep; 2020 Feb; 10(1):1979. PubMed ID: 32029778
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics.
    Ting JT; Daigle TL; Chen Q; Feng G
    Methods Mol Biol; 2014; 1183():221-42. PubMed ID: 25023312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro functional imaging in brain slices using fast voltage-sensitive dye imaging combined with whole-cell patch recording.
    Carlson GC; Coulter DA
    Nat Protoc; 2008; 3(2):249-55. PubMed ID: 18274527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dendritic patch-clamp recording.
    Davie JT; Kole MH; Letzkus JJ; Rancz EA; Spruston N; Stuart GJ; Häusser M
    Nat Protoc; 2006; 1(3):1235-47. PubMed ID: 17406407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of Single Neurons by Perforated Patch Clamp Recordings and MALDI-TOF Mass Spectrometry.
    Neupert S; Fusca D; Kloppenburg P; Predel R
    ACS Chem Neurosci; 2018 Aug; 9(8):2089-2096. PubMed ID: 29906100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Whole-cell patch-clamp recordings from morphologically- and neurochemically-identified hippocampal interneurons.
    Booker SA; Song J; Vida I
    J Vis Exp; 2014 Sep; (91):e51706. PubMed ID: 25350149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integration of autopatching with automated pipette and cell detection in vitro.
    Wu 吴秋雨 Q; Kolb I; Callahan BM; Su Z; Stoy W; Kodandaramaiah SB; Neve R; Zeng H; Boyden ES; Forest CR; Chubykin AA
    J Neurophysiol; 2016 Oct; 116(4):1564-1578. PubMed ID: 27385800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting the functional states of human iPSC-derived neurons with single-cell RNA-seq and electrophysiology.
    Bardy C; van den Hurk M; Kakaradov B; Erwin JA; Jaeger BN; Hernandez RV; Eames T; Paucar AA; Gorris M; Marchand C; Jappelli R; Barron J; Bryant AK; Kellogg M; Lasken RS; Rutten BP; Steinbusch HW; Yeo GW; Gage FH
    Mol Psychiatry; 2016 Nov; 21(11):1573-1588. PubMed ID: 27698428
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Vivo Patch-Clamp Studies.
    Zhou Y; Li H; Xiao Z
    Methods Mol Biol; 2021; 2188():259-271. PubMed ID: 33119856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Whole-cell patch-clamp recordings on spinal cord slices.
    Deng P; Xu ZC
    Methods Mol Biol; 2012; 851():65-72. PubMed ID: 22351082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity.
    Vardi R; Goldental A; Sardi S; Sheinin A; Kanter I
    Sci Rep; 2016 Nov; 6():36228. PubMed ID: 27824075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Digital PCR to determine the number of transcripts from single neurons after patch-clamp recording.
    Faragó N; Kocsis ÁK; Lovas S; Molnár G; Boldog E; Rózsa M; Szemenyei V; Vámos E; Nagy LI; Tamás G; Puskás LG
    Biotechniques; 2013 Jun; 54(6):327-36. PubMed ID: 23750542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A method allowing intracellular and extracellular single-unit recordings from brain slices in the grease-gap chamber.
    Stewart M; Wong RK
    J Neurosci Methods; 1995 May; 58(1-2):17-24. PubMed ID: 7475224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A lamprey striatal brain slice preparation for patch-clamp recordings.
    Ericsson J; Robertson B; Wikström MA
    J Neurosci Methods; 2007 Sep; 165(2):251-6. PubMed ID: 17651809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep learning-based real-time detection of neurons in brain slices for in vitro physiology.
    Yip MC; Gonzalez MM; Valenta CR; Rowan MJM; Forest CR
    Sci Rep; 2021 Mar; 11(1):6065. PubMed ID: 33727679
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methods for single-cell recording and labeling in vivo.
    Cid E; de la Prida LM
    J Neurosci Methods; 2019 Sep; 325():108354. PubMed ID: 31302156
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The preparation and use of brain slices and dissociated neurons for patch-clamp studies of neurotransmitter action.
    Larkman PM; Hećimović H
    Methods Mol Biol; 1997; 72():23-31. PubMed ID: 9249735
    [No Abstract]   [Full Text] [Related]  

  • 39. Visually guided whole cell patch clamp of mouse supraoptic nucleus neurons in cultured and acute conditions.
    Stachniak TJ; Bourque CW
    Am J Physiol Regul Integr Comp Physiol; 2006 Jul; 291(1):R68-76. PubMed ID: 16469834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Head-mounted approaches for targeting single-cells in freely moving animals.
    Valero M; English DF
    J Neurosci Methods; 2019 Oct; 326():108397. PubMed ID: 31400358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.