These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33119885)

  • 21. Mitochondria in Multiple Sclerosis: Molecular Mechanisms of Pathogenesis.
    Patergnani S; Fossati V; Bonora M; Giorgi C; Marchi S; Missiroli S; Rusielewicz T; Wieckowski MR; Pinton P
    Int Rev Cell Mol Biol; 2017; 328():49-103. PubMed ID: 28069137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The m.11778 A > G variant associated with the coexistence of Leber's hereditary optic neuropathy and multiple sclerosis-like illness dysregulates the metabolic interplay between mitochondrial oxidative phosphorylation and glycolysis.
    Uittenbogaard M; Brantner CA; Fang Z; Wong LJ; Gropman A; Chiaramello A
    Mitochondrion; 2019 May; 46():187-194. PubMed ID: 29890302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Galectin-8 as an immunosuppressor in experimental autoimmune encephalomyelitis and a target of human early prognostic antibodies in multiple sclerosis.
    Pardo E; Cárcamo C; Uribe-San Martín R; Ciampi E; Segovia-Miranda F; Curkovic-Peña C; Montecino F; Holmes C; Tichauer JE; Acuña E; Osorio-Barrios F; Castro M; Cortes P; Oyanadel C; Valenzuela DM; Pacheco R; Naves R; Soza A; González A
    PLoS One; 2017; 12(6):e0177472. PubMed ID: 28650992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice.
    Berer K; Gerdes LA; Cekanaviciute E; Jia X; Xiao L; Xia Z; Liu C; Klotz L; Stauffer U; Baranzini SE; Kümpfel T; Hohlfeld R; Krishnamoorthy G; Wekerle H
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10719-10724. PubMed ID: 28893994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Current multiple sclerosis treatments have improved our understanding of MS autoimmune pathogenesis.
    Martin R; Sospedra M; Rosito M; Engelhardt B
    Eur J Immunol; 2016 Sep; 46(9):2078-90. PubMed ID: 27467894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondria-targeted Antioxidants as a Prospective Therapeutic Strategy for Multiple Sclerosis.
    Fetisova E; Chernyak B; Korshunova G; Muntyan M; Skulachev V
    Curr Med Chem; 2017; 24(19):2086-2114. PubMed ID: 28302008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic defects in multiple sclerosis.
    Adiele RC; Adiele CA
    Mitochondrion; 2019 Jan; 44():7-14. PubMed ID: 29246870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis.
    Huseby ES; Liggitt D; Brabb T; Schnabel B; Ohlén C; Goverman J
    J Exp Med; 2001 Sep; 194(5):669-76. PubMed ID: 11535634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The diagnosis of multiple sclerosis and the various related demyelinating syndromes: a critical review.
    Karussis D
    J Autoimmun; 2014; 48-49():134-42. PubMed ID: 24524923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparing the CNS morphology and immunobiology of different EAE models in C57BL/6 mice - a step towards understanding the complexity of multiple sclerosis.
    Kuerten S; Angelov DN
    Ann Anat; 2008; 190(1):1-15. PubMed ID: 18342137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alterations in Lymphocytic Metabolism-An Emerging Hallmark of MS Pathophysiology?
    Greeck VB; Williams SK; Haas J; Wildemann B; Fairless R
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comprehensive review on the treatment approaches of multiple sclerosis: currently and in the future.
    Gholamzad M; Ebtekar M; Ardestani MS; Azimi M; Mahmodi Z; Mousavi MJ; Aslani S
    Inflamm Res; 2019 Jan; 68(1):25-38. PubMed ID: 30178100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Clinical and pathological topics of multiple sclerosis].
    Lassmann H
    Rinsho Shinkeigaku; 2009 Nov; 49(11):715-8. PubMed ID: 20030193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomarkers in Multiple Sclerosis.
    Paul A; Comabella M; Gandhi R
    Cold Spring Harb Perspect Med; 2019 Mar; 9(3):. PubMed ID: 29500303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Axon loss in the spinal cord determines permanent neurological disability in an animal model of multiple sclerosis.
    Wujek JR; Bjartmar C; Richer E; Ransohoff RM; Yu M; Tuohy VK; Trapp BD
    J Neuropathol Exp Neurol; 2002 Jan; 61(1):23-32. PubMed ID: 11829341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contribution of Metabolomics to Multiple Sclerosis Diagnosis, Prognosis and Treatment.
    Rispoli MG; Valentinuzzi S; De Luca G; Del Boccio P; Federici L; Di Ioia M; Digiovanni A; Grasso EA; Pozzilli V; Villani A; Chiarelli AM; Onofrj M; Wise RG; Pieragostino D; Tomassini V
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681773
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Role of MicroRNAs in Repair Processes in Multiple Sclerosis.
    Duffy CP; McCoy CE
    Cells; 2020 Jul; 9(7):. PubMed ID: 32708794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pathology of multiple sclerosis.
    Kipp M; van der Valk P; Amor S
    CNS Neurol Disord Drug Targets; 2012 Aug; 11(5):506-17. PubMed ID: 22583433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Excitotoxins, Mitochondrial and Redox Disturbances in Multiple Sclerosis.
    Rajda C; Pukoli D; Bende Z; Majláth Z; Vécsei L
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28208701
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development.
    Ben-Nun A; Kaushansky N; Kawakami N; Krishnamoorthy G; Berer K; Liblau R; Hohlfeld R; Wekerle H
    J Autoimmun; 2014 Nov; 54():33-50. PubMed ID: 25175979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.