These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 33119899)
21. Deep Learning Radiomics Nomogram Based on Enhanced CT to Predict the Response of Metastatic Lymph Nodes to Neoadjuvant Chemotherapy in Locally Advanced Gastric Cancer. Zhong H; Wang T; Hou M; Liu X; Tian Y; Cao S; Li Z; Han Z; Liu G; Sun Y; Meng C; Li Y; Jiang Y; Ji Q; Hao D; Liu Z; Zhou Y Ann Surg Oncol; 2024 Jan; 31(1):421-432. PubMed ID: 37925653 [TBL] [Abstract][Full Text] [Related]
22. Radiomics Response Signature for Identification of Metastatic Colorectal Cancer Sensitive to Therapies Targeting EGFR Pathway. Dercle L; Lu L; Schwartz LH; Qian M; Tejpar S; Eggleton P; Zhao B; Piessevaux H J Natl Cancer Inst; 2020 Sep; 112(9):902-912. PubMed ID: 32016387 [TBL] [Abstract][Full Text] [Related]
23. Prediction of Local Tumor Progression After Microwave Ablation in Colorectal Carcinoma Liver Metastases Patients by MRI Radiomics and Clinical Characteristics-Based Combined Model: Preliminary Results. Shahveranova A; Balli HT; Aikimbaev K; Piskin FC; Sozutok S; Yucel SP Cardiovasc Intervent Radiol; 2023 Jun; 46(6):713-725. PubMed ID: 37156944 [TBL] [Abstract][Full Text] [Related]
24. CT-based radiomics analysis to predict local progression of recurrent colorectal liver metastases after microwave ablation. Hu H; Chi JC; Zhai B; Guo JH Medicine (Baltimore); 2023 Dec; 102(52):e36586. PubMed ID: 38206750 [TBL] [Abstract][Full Text] [Related]
25. A comparative study between deep learning and radiomics models in grading liver tumors using hepatobiliary phase contrast-enhanced MR images. Du L; Yuan J; Gan M; Li Z; Wang P; Hou Z; Wang C BMC Med Imaging; 2022 Dec; 22(1):218. PubMed ID: 36517762 [TBL] [Abstract][Full Text] [Related]
26. Deep radiomics-based fusion model for prediction of bevacizumab treatment response and outcome in patients with colorectal cancer liver metastases: a multicentre cohort study. Zhou S; Sun D; Mao W; Liu Y; Cen W; Ye L; Liang F; Xu J; Shi H; Ji Y; Wang L; Chang W EClinicalMedicine; 2023 Nov; 65():102271. PubMed ID: 37869523 [TBL] [Abstract][Full Text] [Related]
27. Development of a CT-Based comprehensive model combining clinical, radiomics with deep learning for differentiating pulmonary metastases from noncalcified pulmonary hamartomas: a retrospective cohort study. Liu Y; Ren H; Pei Y; Shen L; Guo J; Zhou J; Li C; Liu Y Int J Surg; 2024 Aug; 110(8):4900-4910. PubMed ID: 38759692 [TBL] [Abstract][Full Text] [Related]
28. A CT-based radiomics nomogram for differentiation of focal nodular hyperplasia from hepatocellular carcinoma in the non-cirrhotic liver. Nie P; Yang G; Guo J; Chen J; Li X; Ji Q; Wu J; Cui J; Xu W Cancer Imaging; 2020 Feb; 20(1):20. PubMed ID: 32093786 [TBL] [Abstract][Full Text] [Related]
29. Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases. Taghavi M; Trebeschi S; Simões R; Meek DB; Beckers RCJ; Lambregts DMJ; Verhoef C; Houwers JB; van der Heide UA; Beets-Tan RGH; Maas M Abdom Radiol (NY); 2021 Jan; 46(1):249-256. PubMed ID: 32583138 [TBL] [Abstract][Full Text] [Related]
30. Association of CT-Based Delta Radiomics Biomarker With Progression-Free Survival in Patients With Colorectal Liver Metastases Undergo Chemotherapy. Ye S; Han Y; Pan X; Niu K; Liao Y; Meng X Front Oncol; 2022; 12():843991. PubMed ID: 35692757 [TBL] [Abstract][Full Text] [Related]
31. Ct-based subregional radiomics using hand-crafted and deep learning features for prediction of therapeutic response to anti-PD1 therapy in NSCLC. Hu Y; Jiang T; Wang H; Song J; Yang Z; Wang Y; Su J; Jin M; Chang S; Deng K; Jiang W Phys Med; 2024 Jan; 117():103200. PubMed ID: 38160516 [TBL] [Abstract][Full Text] [Related]
32. Differential diagnosis of benign and malignant vertebral compression fractures: Comparison and correlation of radiomics and deep learning frameworks based on spinal CT and clinical characteristics. Duan S; Hua Y; Cao G; Hu J; Cui W; Zhang D; Xu S; Rong T; Liu B Eur J Radiol; 2023 Aug; 165():110899. PubMed ID: 37300935 [TBL] [Abstract][Full Text] [Related]
33. Radiomics predicts response of individual HER2-amplified colorectal cancer liver metastases in patients treated with HER2-targeted therapy. Giannini V; Rosati S; Defeudis A; Balestra G; Vassallo L; Cappello G; Mazzetti S; De Mattia C; Rizzetto F; Torresin A; Sartore-Bianchi A; Siena S; Vanzulli A; Leone F; Zagonel V; Marsoni S; Regge D Int J Cancer; 2020 Dec; 147(11):3215-3223. PubMed ID: 32875550 [TBL] [Abstract][Full Text] [Related]
34. Clinic, CT radiomics, and deep learning combined model for the prediction of invasive pulmonary aspergillosis. Zhang K; Zhao G; Liu Y; Huang Y; Long J; Li N; Yan H; Zhang X; Ma J; Zhang Y BMC Med Imaging; 2024 Oct; 24(1):264. PubMed ID: 39375609 [TBL] [Abstract][Full Text] [Related]
35. A Delta-radiomics model for preoperative evaluation of Neoadjuvant chemotherapy response in high-grade osteosarcoma. Lin P; Yang PF; Chen S; Shao YY; Xu L; Wu Y; Teng W; Zhou XZ; Li BH; Luo C; Xu LM; Huang M; Niu TY; Ye ZM Cancer Imaging; 2020 Jan; 20(1):7. PubMed ID: 31937372 [TBL] [Abstract][Full Text] [Related]
36. Machine learning and radiomics analysis by computed tomography in colorectal liver metastases patients for RAS mutational status prediction. Granata V; Fusco R; Setola SV; Brunese MC; Di Mauro A; Avallone A; Ottaiano A; Normanno N; Petrillo A; Izzo F Radiol Med; 2024 Jul; 129(7):957-966. PubMed ID: 38761342 [TBL] [Abstract][Full Text] [Related]
37. Deep Learning Radiomics Model of Contrast-Enhanced CT for Differentiating the Primary Source of Liver Metastases. Jia W; Li F; Cui Y; Wang Y; Dai Z; Yan Q; Liu X; Li Y; Chang H; Zeng Q Acad Radiol; 2024 Oct; 31(10):4057-4067. PubMed ID: 38702214 [TBL] [Abstract][Full Text] [Related]
38. CT-based Radiomics Signature to Discriminate High-grade From Low-grade Colorectal Adenocarcinoma. Huang X; Cheng Z; Huang Y; Liang C; He L; Ma Z; Chen X; Wu X; Li Y; Liang C; Liu Z Acad Radiol; 2018 Oct; 25(10):1285-1297. PubMed ID: 29503175 [TBL] [Abstract][Full Text] [Related]
39. Differentiation of Lung Metastases Originated From Different Primary Tumors Using Radiomics Features Based on CT Imaging. Shang H; Li J; Jiao T; Fang C; Li K; Yin D; Zeng Q Acad Radiol; 2023 Jan; 30(1):40-46. PubMed ID: 35577699 [TBL] [Abstract][Full Text] [Related]
40. Deep learning Radiomics Based on Two-Dimensional Ultrasound for Predicting the Efficacy of Neoadjuvant Chemotherapy in Breast Cancer. Wang Z; Li X; Zhang H; Duan T; Zhang C; Zhao T Ultrason Imaging; 2024 Nov; 46(6):357-366. PubMed ID: 39257175 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]