BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33120021)

  • 1. Guidelines to Study and Develop Soft Electrode Systems for Neural Stimulation.
    Schiavone G; Kang X; Fallegger F; Gandar J; Courtine G; Lacour SP
    Neuron; 2020 Oct; 108(2):238-258. PubMed ID: 33120021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A translational framework for peripheral nerve stimulating electrodes: Reviewing the journey from concept to clinic.
    Charkhkar H; Christie BP; Pinault GJ; Tyler DJ; Triolo RJ
    J Neurosci Methods; 2019 Dec; 328():108414. PubMed ID: 31472187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Electrical Neural Interface Engineering: Minimal Invasiveness, Longevity, and Scalability.
    Luan L; Robinson JT; Aazhang B; Chi T; Yang K; Li X; Rathore H; Singer A; Yellapantula S; Fan Y; Yu Z; Xie C
    Neuron; 2020 Oct; 108(2):302-321. PubMed ID: 33120025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice.
    Park DW; Ness JP; Brodnick SK; Esquibel C; Novello J; Atry F; Baek DH; Kim H; Bong J; Swanson KI; Suminski AJ; Otto KJ; Pashaie R; Williams JC; Ma Z
    ACS Nano; 2018 Jan; 12(1):148-157. PubMed ID: 29253337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term functionality of a soft electrode array for epidural spinal cord stimulation in a minipig model.
    Schiavone G; Wagner F; Fallegger F; Kang X; Vachicouras N; Barra B; Capogrosso M; Bloch J; Courtine G; Lacour SP
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1432-1435. PubMed ID: 30440661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advantages of soft subdural implants for the delivery of electrochemical neuromodulation therapies to the spinal cord.
    Capogrosso M; Gandar J; Greiner N; Moraud EM; Wenger N; Shkorbatova P; Musienko P; Minev I; Lacour S; Courtine G
    J Neural Eng; 2018 Apr; 15(2):026024. PubMed ID: 29339580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tutorial: guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics.
    Boehler C; Carli S; Fadiga L; Stieglitz T; Asplund M
    Nat Protoc; 2020 Nov; 15(11):3557-3578. PubMed ID: 33077918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective electrical interfaces with the nervous system.
    Rutten WL
    Annu Rev Biomed Eng; 2002; 4():407-52. PubMed ID: 12117764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomaterials. Electronic dura mater for long-term multimodal neural interfaces.
    Minev IR; Musienko P; Hirsch A; Barraud Q; Wenger N; Moraud EM; Gandar J; Capogrosso M; Milekovic T; Asboth L; Torres RF; Vachicouras N; Liu Q; Pavlova N; Duis S; Larmagnac A; Vörös J; Micera S; Suo Z; Courtine G; Lacour SP
    Science; 2015 Jan; 347(6218):159-63. PubMed ID: 25574019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes.
    Vitale F; Summerson SR; Aazhang B; Kemere C; Pasquali M
    ACS Nano; 2015; 9(4):4465-74. PubMed ID: 25803728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and fabrication of a multi-electrode array for spinal cord epidural stimulation.
    Chang CW; Lo YK; Gad P; Edgerton R; Liu W
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6834-7. PubMed ID: 25571566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural stimulation and recording electrodes.
    Cogan SF
    Annu Rev Biomed Eng; 2008; 10():275-309. PubMed ID: 18429704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges for Large-Scale Cortical Interfaces.
    Nurmikko A
    Neuron; 2020 Oct; 108(2):259-269. PubMed ID: 33120022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotube coating improves neuronal recordings.
    Keefer EW; Botterman BR; Romero MI; Rossi AF; Gross GW
    Nat Nanotechnol; 2008 Jul; 3(7):434-9. PubMed ID: 18654569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.
    Kim R; Nam Y
    J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryogel-based neurostimulation electrodes to activate endogenous neural precursor cells.
    Chen T; Lau KSK; Hong SH; Shi HTH; Iwasa SN; Chen JXM; Li T; Morrison T; Kalia SK; Popovic MR; Morshead CM; Naguib HE
    Acta Biomater; 2023 Nov; 171():392-405. PubMed ID: 37683963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.
    Zhang J; Liu X; Xu W; Luo W; Li M; Chu F; Xu L; Cao A; Guan J; Tang S; Duan X
    Nano Lett; 2018 May; 18(5):2903-2911. PubMed ID: 29608857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical stimulation of the brain. I. Electrodes and electrode arrays.
    Pudenz RH; Bullara LA; Talalla A
    Surg Neurol; 1975 Jul; 4(1):37-42. PubMed ID: 1166402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.