These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33120056)

  • 21. Aerobic treatment of swine manure to enhance anaerobic digestion and microalgal cultivation.
    Bekoe D; Wang L; Zhang B; Scott Todd M; Shahbazi A
    J Environ Sci Health B; 2018 Feb; 53(2):145-151. PubMed ID: 29131711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of Chlorella vulgaris and indigenous microalgae biomass with treated wastewater as growth culture medium.
    Fernández-Linares LC; Guerrero Barajas C; Durán Páramo E; Badillo Corona JA
    Bioresour Technol; 2017 Nov; 244(Pt 1):400-406. PubMed ID: 28783567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phycoremediation of milk processing wastewater and lipid-rich biomass production using Chlorella vulgaris under continuous batch system.
    Verma R; Suthar S; Chand N; Mutiyar PK
    Sci Total Environ; 2022 Aug; 833():155110. PubMed ID: 35398125
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acclimation process of cultivating Chlorella vulgaris in toxic excess sludge extract and its response mechanism.
    Wang L; Wang H; Chen X; Zhuang Y; Yu Z; Zhou T
    Sci Total Environ; 2018 Jul; 628-629():858-869. PubMed ID: 29455136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced lipid and biomass production using alcohol wastewater as carbon source for Chlorella pyrenoidosa cultivation in anaerobically digested starch wastewater in outdoors.
    Tan XB; Zhao XC; Zhang YL; Zhou YY; Yang LB; Zhang WW
    Bioresour Technol; 2018 Jan; 247():784-793. PubMed ID: 30060414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient nutrient removal from swine manure in a tubular biofilm photo-bioreactor using algae-bacteria consortia.
    González C; Marciniak J; Villaverde S; León C; García PA; Muñoz R
    Water Sci Technol; 2008; 58(1):95-102. PubMed ID: 18653942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous biomass and lipid production from local chlorella-bacteria consortium in raw wastewater using volatile fatty acids.
    Zuo Y; Wongsnansilp T; Zhang X; Chen G; Wu Z
    Biotechnol Lett; 2020 Aug; 42(8):1449-1455. PubMed ID: 32488443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An integrated semi-continuous culture to treat original swine wastewater and fix carbon dioxide by an indigenous Chlorella vulgaris MBFJNU-1 in an outdoor photobioreactor.
    Zheng M; Dai J; Ji X; Li D; He Y; Wang M; Huang J; Chen B
    Bioresour Technol; 2021 Nov; 340():125703. PubMed ID: 34371337
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation on the feasibility of Chlorella vulgaris cultivation in a mixture of pulp and aquaculture effluents: Treatment of wastewater and lipid extraction.
    Daneshvar E; Antikainen L; Koutra E; Kornaros M; Bhatnagar A
    Bioresour Technol; 2018 May; 255():104-110. PubMed ID: 29414154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of combining adsorption-stripping treatment with acidification on the growth of Chlorella vulgaris and nutrient removal from swine wastewater.
    Cao L; Zhou T; Li Z; Wang J; Tang J; Ruan R; Liu Y
    Bioresour Technol; 2018 Sep; 263():10-16. PubMed ID: 29723844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microalgae cultivation for the treatment of anaerobically digested municipal centrate (ADMC) and anaerobically digested abattoir effluent (ADAE).
    Vadiveloo A; Foster L; Kwambai C; Bahri PA; Moheimani NR
    Sci Total Environ; 2021 Jun; 775():145853. PubMed ID: 33621869
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioethanol production from Chlorella vulgaris ESP-31 grown in unsterilized swine wastewater.
    Acebu PIG; de Luna MDG; Chen CY; Abarca RRM; Chen JH; Chang JS
    Bioresour Technol; 2022 May; 352():127086. PubMed ID: 35364235
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Using Excess Activated Sludge Treated 4-Chlorophenol Contained Waste Water to Cultivate Chlorella vulgaris].
    Wang L; Chen XR; Yan L; He YX; Shi ZD
    Huan Jing Ke Xue; 2015 Apr; 36(4):1406-11. PubMed ID: 26164919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nutrient and heavy metal removal from piggery wastewater and CH
    Guo G; Guan J; Sun S; Liu J; Zhao Y
    Water Environ Res; 2020 Jun; 92(6):922-933. PubMed ID: 31837273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chlorella vulgaris cultivation in pilot-scale to treat real swine wastewater and mitigate carbon dioxide for sustainable biodiesel production by direct enzymatic transesterification.
    Xie D; Ji X; Zhou Y; Dai J; He Y; Sun H; Guo Z; Yang Y; Zheng X; Chen B
    Bioresour Technol; 2022 Apr; 349():126886. PubMed ID: 35217166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of nutrient loads, feeding frequency and inoculum source on growth of Chlorella vulgaris in digested piggery effluent culture medium.
    Kumar MS; Miao ZH; Wyatt SK
    Bioresour Technol; 2010 Aug; 101(15):6012-8. PubMed ID: 20338751
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chlorella vulgaris growth on anaerobically digested sugarcane vinasse: influence of turbidity.
    Serejo ML; Ruas G; Braga GB; Paulo PL; Boncz MÀ
    An Acad Bras Cienc; 2021; 93(1):e20190084. PubMed ID: 33909816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production.
    Church J; Hwang JH; Kim KT; McLean R; Oh YK; Nam B; Joo JC; Lee WH
    Bioresour Technol; 2017 Nov; 243():147-153. PubMed ID: 28651134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation of a freshwater microalgae and its application for the treatment of wastewater and obtaining fatty acids from tilapia cultivation.
    Morando-Grijalva CA; Vázquez-Larios AL; Alcántara-Hernández RJ; Ortega-Clemente LA; Robledo-Narváez PN
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):28575-28584. PubMed ID: 32212076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Symbiotic algal bacterial wastewater treatment: effect of food to microorganism ratio and hydraulic retention time on the process performance.
    Medina M; Neis U
    Water Sci Technol; 2007; 55(11):165-71. PubMed ID: 17591209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.