BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 33120061)

  • 21. Surface properties and suspension stability of low-temperature pyrolyzed biochar nanoparticles: Effects of solution chemistry and feedstock sources.
    Xu CY; Li QR; Geng ZC; Hu FN; Zhao SW
    Chemosphere; 2020 Nov; 259():127510. PubMed ID: 32650172
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality.
    Jassal RS; Johnson MS; Molodovskaya M; Black TA; Jollymore A; Sveinson K
    J Environ Manage; 2015 Apr; 152():140-4. PubMed ID: 25621388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of Pyrolysis Temperature and Feedstock on Surface Charge and Functional Group Chemistry of Biochars.
    Banik C; Lawrinenko M; Bakshi S; Laird DA
    J Environ Qual; 2018 May; 47(3):452-461. PubMed ID: 29864182
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment.
    Windeatt JH; Ross AB; Williams PT; Forster PM; Nahil MA; Singh S
    J Environ Manage; 2014 Dec; 146():189-197. PubMed ID: 25173727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products.
    Jeong CY; Dodla SK; Wang JJ
    Chemosphere; 2016 Jan; 142():4-13. PubMed ID: 26058554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar.
    Zhang X; Zhang P; Yuan X; Li Y; Han L
    Bioresour Technol; 2020 Jan; 296():122318. PubMed ID: 31675650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: Influence of pyrolysis temperature and feedstock type.
    Subedi R; Taupe N; Pelissetti S; Petruzzelli L; Bertora C; Leahy JJ; Grignani C
    J Environ Manage; 2016 Jan; 166():73-83. PubMed ID: 26484602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of biochar prepared from biogas digestate.
    Hung CY; Tsai WT; Chen JW; Lin YQ; Chang YM
    Waste Manag; 2017 Aug; 66():53-60. PubMed ID: 28487174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment.
    Campos P; Miller AZ; Knicker H; Costa-Pereira MF; Merino A; De la Rosa JM
    Waste Manag; 2020 Mar; 105():256-267. PubMed ID: 32088572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Effect of Biodegradable Waste Pyrolysis Temperatures on Selected Biochar Properties.
    Wystalska K; Kwarciak-Kozłowska A
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33801643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of biochar pyrolysis temperature on intracellular and extracellular biodegradation of biochar-adsorbed organic compounds.
    Tao J; Wu W; Lin D; Yang K
    Environ Pollut; 2024 Apr; 346():123583. PubMed ID: 38365081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving biochar properties by co-pyrolysis of pig manure with bio-invasive weed for use as the soil amendment.
    Qiu J; Fernandes de Souza M; Robles-Aguilar AA; Ghysels S; Ok YS; Ronsse F; Meers E
    Chemosphere; 2023 Jan; 312(Pt 1):137229. PubMed ID: 36372342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of pyrolysis temperature on characteristics, chemical speciation and environmental risk of Cr, Mn, Cu, and Zn in biochars derived from pig manure.
    Shen X; Zeng J; Zhang D; Wang F; Li Y; Yi W
    Sci Total Environ; 2020 Feb; 704():135283. PubMed ID: 31822406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon dioxide as a carrier gas and mixed feedstock pyrolysis decreased toxicity of sewage sludge biochar.
    Kończak M; Pan B; Ok YS; Oleszczuk P
    Sci Total Environ; 2020 Jun; 723():137796. PubMed ID: 32222497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased agronomic and environmental value provided by biochars with varied physiochemical properties derived from swine manure blended with rice straw.
    Dai Z; Brookes PC; He Y; Xu J
    J Agric Food Chem; 2014 Nov; 62(44):10623-31. PubMed ID: 25307928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars.
    Yang HI; Lou K; Rajapaksha AU; Ok YS; Anyia AO; Chang SX
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):25638-25647. PubMed ID: 28229381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production and properties assessment of biochars from rapeseed and poplar waste biomass for environmental applications in Romania.
    Gheorghe-Bulmau C; Volceanov A; Stanciulescu I; Ionescu G; Marculescu C; Radoiu M
    Environ Geochem Health; 2022 Jun; 44(6):1683-1696. PubMed ID: 34414519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of carbon nanotubes using biochar as precursor material under microwave irradiation.
    Hildago-Oporto P; Navia R; Hunter R; Coronado G; Gonzalez ME
    J Environ Manage; 2019 Aug; 244():83-91. PubMed ID: 31108314
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake.
    Angın D
    Bioresour Technol; 2013 Jan; 128():593-7. PubMed ID: 23211485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of feedstock and pyrolysis temperature of biochar amendments on transport of Escherichia coli in saturated and unsaturated soil.
    Abit SM; Bolster CH; Cai P; Walker SL
    Environ Sci Technol; 2012 Aug; 46(15):8097-105. PubMed ID: 22738035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.