BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33120151)

  • 41. Effects of molecular weight-dependent physicochemical heterogeneity of natural organic matter on the aggregation of fullerene nanoparticles in mono- and di-valent electrolyte solutions.
    Shen MH; Yin YG; Booth A; Liu JF
    Water Res; 2015 Mar; 71():11-20. PubMed ID: 25577691
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aggregation kinetics and stability of biodegradable nanoplastics in aquatic environments: Effects of UV-weathering and proteins.
    Yu Y; Astner AF; Zahid TM; Chowdhury I; Hayes DG; Flury M
    Water Res; 2023 Jul; 239():120018. PubMed ID: 37201372
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles.
    Baalousha M; Nur Y; Römer I; Tejamaya M; Lead JR
    Sci Total Environ; 2013 Jun; 454-455():119-31. PubMed ID: 23542485
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reciprocal effects of NOM and solution electrolyte ions on aggregation of ferrihydrite nanoparticles.
    Li Z; Hu Y; Chen Y; Fang S; Liu Y; Tang W; Chen J
    Chemosphere; 2023 Aug; 332():138918. PubMed ID: 37178934
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of size and surface charge on the sedimentation of nanoplastics in freshwater.
    Zhu H; Fan X; Zou H; Guo RB; Fu SF
    Chemosphere; 2023 Sep; 336():139194. PubMed ID: 37315858
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The crucial role of a protein corona in determining the aggregation kinetics and colloidal stability of polystyrene nanoplastics.
    Li X; He E; Jiang K; Peijnenburg WJGM; Qiu H
    Water Res; 2021 Feb; 190():116742. PubMed ID: 33348070
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The difference of aggregation mechanism between microplastics and nanoplastics: Role of Brownian motion and structural layer force.
    Sun H; Jiao R; Wang D
    Environ Pollut; 2021 Jan; 268(Pt B):115942. PubMed ID: 33158612
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative characterization of non-DLVO factors in the aggregation of black soil colloids.
    Gao X; Kou Q; Ren K; Zuo Y; Xu Y; Zhang Y; Lal R; Wang J
    Sci Rep; 2022 Mar; 12(1):5064. PubMed ID: 35332206
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bound and unbound humic acids perform different roles in the aggregation and deposition of multi-walled carbon nanotubes.
    Yang X; Wang Q; Qu X; Jiang W
    Sci Total Environ; 2017 May; 586():738-745. PubMed ID: 28202237
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles.
    Wang X; Sun T; Zhu H; Han T; Wang J; Dai H
    J Environ Manage; 2020 Aug; 267():110656. PubMed ID: 32349960
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coagulation kinetics of humic aggregates in mono- and di-valent electrolyte solutions.
    Wang LF; Wang LL; Ye XD; Li WW; Ren XM; Sheng GP; Yu HQ; Wang XK
    Environ Sci Technol; 2013 May; 47(10):5042-9. PubMed ID: 23590432
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.
    Zhu M; Wang H; Keller AA; Wang T; Li F
    Sci Total Environ; 2014 Jul; 487():375-80. PubMed ID: 24793841
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of electrolytes on the aggregation kinetics of three different ZnO nanoparticles in water.
    Peng YH; Tso CP; Tsai YC; Zhuang CM; Shih YH
    Sci Total Environ; 2015 Oct; 530-531():183-190. PubMed ID: 26042532
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of Cr(VI) oxyanion, humic acid and solution chemistry on the aggregation and colloidal stability of green synthesized chlorapatite nanoparticles.
    Zhang M; Wei W; Chen Y; Han X
    Chemosphere; 2023 Nov; 342():140147. PubMed ID: 37716557
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aggregation Kinetics of Diesel Soot Nanoparticles in Wet Environments.
    Chen C; Huang W
    Environ Sci Technol; 2017 Feb; 51(4):2077-2086. PubMed ID: 28090765
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Combined effects of particle size and humic acid corona on the aggregation kinetics of nanoplastics in aquatic environments.
    Sun H; Jiao R; Yu J; Wang D
    Sci Total Environ; 2023 Nov; 901():165987. PubMed ID: 37536605
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Combined effects of photoaging and natural organic matter on the colloidal stability of nanoplastics in aquatic environments.
    Xu Y; Ou Q; Li X; Wang X; van der Hoek JP; Liu G
    Water Res; 2022 Nov; 226():119313. PubMed ID: 36369686
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deposition and aggregation kinetics of rotavirus in divalent cation solutions.
    Gutierrez L; Mylon SE; Nash B; Nguyen TH
    Environ Sci Technol; 2010 Jun; 44(12):4552-7. PubMed ID: 20481597
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Systematic studies on the binding of metal ions in aggregates of humic acid: Aggregation kinetics, spectroscopic analyses and MD simulations.
    Tan L; Yu Z; Tan X; Fang M; Wang X; Wang J; Xing J; Ai Y; Wang X
    Environ Pollut; 2019 Mar; 246():999-1007. PubMed ID: 31159149
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes.
    Yi P; Chen KL
    Langmuir; 2011 Apr; 27(7):3588-99. PubMed ID: 21355574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.