These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 33120274)
1. Evaluation of chemical stabilisation methods of coal-petcoke fly ash to reduce the mobility of Mo and Ni against environmental concerns. Córdoba P; Ayora C; Querol X Ecotoxicol Environ Saf; 2021 Jan; 208():111488. PubMed ID: 33120274 [TBL] [Abstract][Full Text] [Related]
2. Influence of a modification of the petcoke/coal ratio on the leachability of fly ash and slag produced from a large PCC power plant. Izquierdo M; Font O; Moreno N; Querol X; Huggins FE; Alvarez E; Diez S; Otero P; Ballesteros JC; Gimenez A Environ Sci Technol; 2007 Aug; 41(15):5330-5. PubMed ID: 17822098 [TBL] [Abstract][Full Text] [Related]
3. A review on fly ash from coal-fired power plants: chemical composition, regulations, and health evidence. Zierold KM; Odoh C Rev Environ Health; 2020 Nov; 35(4):401-418. PubMed ID: 32324165 [TBL] [Abstract][Full Text] [Related]
4. Chemical Speciation and Leaching Behavior of Hazardous Trace Elements in Coal Combustion Products from Coal-Fired Power Stations in China. Córdoba P; Li B; Li J; Zhuang X; Querol X ACS Omega; 2022 May; 7(17):14697-14711. PubMed ID: 35557669 [TBL] [Abstract][Full Text] [Related]
6. CO₂ carbonation under aqueous conditions using petroleum coke combustion fly ash. González A; Moreno N; Navia R Chemosphere; 2014 Dec; 117():139-43. PubMed ID: 25000300 [TBL] [Abstract][Full Text] [Related]
7. Emission characteristics of heavy metals and their behavior during coking processes. Mu L; Peng L; Liu X; Bai H; Song C; Wang Y; Li Z Environ Sci Technol; 2012 Jun; 46(11):6425-30. PubMed ID: 22607524 [TBL] [Abstract][Full Text] [Related]
8. Application of mine water leaching protocol on coal fly ash to assess leaching characteristics for suitability as a mine backfill material. Madzivire G; Ramasenya K; Tlowana S; Coetzee H; Vadapalli VRK J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Apr; 53(5):467-474. PubMed ID: 29232163 [TBL] [Abstract][Full Text] [Related]
9. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies. Mokhtar MM; Taib RM; Hassim MH J Air Waste Manag Assoc; 2014 Aug; 64(8):867-78. PubMed ID: 25185389 [TBL] [Abstract][Full Text] [Related]
10. Chemical, mineralogical and morphological changes in weathered coal fly ash: a case study of a brine impacted wet ash dump. Eze CP; Nyale SM; Akinyeye RO; Gitari WM; Akinyemi SA; Fatoba OO; Petrik LF J Environ Manage; 2013 Nov; 129():479-92. PubMed ID: 24013557 [TBL] [Abstract][Full Text] [Related]
11. Controlling the mobility of chromium and molybdenum in MSWI fly ash in a washing process. Nordmark D; Lagerkvist A Waste Manag; 2018 Jun; 76():727-733. PubMed ID: 29551230 [TBL] [Abstract][Full Text] [Related]
12. Fly ashes from coal and petroleum coke combustion: current and innovative potential applications. González A; Navia R; Moreno N Waste Manag Res; 2009 Dec; 27(10):976-87. PubMed ID: 19423583 [TBL] [Abstract][Full Text] [Related]
13. Oral bioaccessibility of inorganic contaminants in waste dusts generated by laterite Ni ore smelting. Ettler V; Polák L; Mihaljevič M; Ratié G; Garnier J; Quantin C Environ Geochem Health; 2018 Oct; 40(5):1699-1712. PubMed ID: 27629409 [TBL] [Abstract][Full Text] [Related]
14. Co-disposal of lignite fly ash and coal mine waste rock for neutralisation of AMD. Qureshi A; Maurice C; Öhlander B Environ Sci Pollut Res Int; 2021 Sep; 28(35):48728-48741. PubMed ID: 33928498 [TBL] [Abstract][Full Text] [Related]
15. Ignoring emissions of Hg from coal ash and desulfurized gypsum will lead to ineffective mercury control in coal-fired power plants in China. Yang Y; Huang Q; Wang Q Environ Sci Technol; 2012 Mar; 46(6):3058-9. PubMed ID: 22428843 [No Abstract] [Full Text] [Related]
16. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology. He J; Duan C; Lei M; Zhu X Environ Technol; 2016; 37(1):28-38. PubMed ID: 26121324 [TBL] [Abstract][Full Text] [Related]
17. Alkali activation of recovered fuel-biofuel fly ash from fluidised-bed combustion: Stabilisation/solidification of heavy metals. Yliniemi J; Pesonen J; Tiainen M; Illikainen M Waste Manag; 2015 Sep; 43():273-82. PubMed ID: 26054963 [TBL] [Abstract][Full Text] [Related]
18. Coal fly ash-slag-based geopolymers: microstructure and metal leaching. Izquierdo M; Querol X; Davidovits J; Antenucci D; Nugteren H; Fernández-Pereira C J Hazard Mater; 2009 Jul; 166(1):561-6. PubMed ID: 19118943 [TBL] [Abstract][Full Text] [Related]
20. Speciation of major and trace elements leached from coal fly ash and the kinetics involved. Hailu SL; McCrindle RI; Seopela MP; Combrinck S J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(12):1186-1196. PubMed ID: 31271099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]