These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 33120529)
1. Spatio-temporal Bazykin's model with space-time nonlocality. Pal S; Banerjee M; Volpert V Math Biosci Eng; 2020 Jul; 17(5):4801-4824. PubMed ID: 33120529 [TBL] [Abstract][Full Text] [Related]
2. Stability and bifurcation analysis of the Bazykin's predator-prey ecosystem with Holling type Ⅱ functional response. Wang S; Yu H Math Biosci Eng; 2021 Sep; 18(6):7877-7918. PubMed ID: 34814280 [TBL] [Abstract][Full Text] [Related]
3. Effect of kernels on spatio-temporal patterns of a non-local prey-predator model. Pal S; Ghorai S; Banerjee M Math Biosci; 2019 Apr; 310():96-107. PubMed ID: 30735694 [TBL] [Abstract][Full Text] [Related]
4. The effect of nonlocal interaction on chaotic dynamics, Turing patterns, and population invasion in a prey-predator model. Yadav R; Pal S; Sen M Chaos; 2023 Oct; 33(10):. PubMed ID: 37862367 [TBL] [Abstract][Full Text] [Related]
5. Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model. Banerjee M; Banerjee S Math Biosci; 2012 Mar; 236(1):64-76. PubMed ID: 22207074 [TBL] [Abstract][Full Text] [Related]
6. Bifurcations and hydra effects in Bazykin's predator-prey model. Adhikary PD; Mukherjee S; Ghosh B Theor Popul Biol; 2021 Aug; 140():44-53. PubMed ID: 34052251 [TBL] [Abstract][Full Text] [Related]
7. Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations. Baurmann M; Gross T; Feudel U J Theor Biol; 2007 Mar; 245(2):220-9. PubMed ID: 17140604 [TBL] [Abstract][Full Text] [Related]
8. Relaxation oscillations of a piecewise-smooth slow-fast Bazykin's model with Holling type Ⅰ functional response. Wu X; Lu S; Xie F Math Biosci Eng; 2023 Sep; 20(10):17608-17624. PubMed ID: 38052528 [TBL] [Abstract][Full Text] [Related]
9. Turing-Hopf Bifurcation Analysis in a Diffusive Ratio-Dependent Predator-Prey Model with Allee Effect and Predator Harvesting. Chen M; Xu Y; Zhao J; Wei X Entropy (Basel); 2023 Dec; 26(1):. PubMed ID: 38248144 [TBL] [Abstract][Full Text] [Related]
10. Patterns induced by super cross-diffusion in a predator-prey system with Michaelis-Menten type harvesting. Liu B; Wu R; Chen L Math Biosci; 2018 Apr; 298():71-79. PubMed ID: 29471009 [TBL] [Abstract][Full Text] [Related]
11. Turing-Hopf bifurcation analysis in a superdiffusive predator-prey model. Liu B; Wu R; Chen L Chaos; 2018 Nov; 28(11):113118. PubMed ID: 30501205 [TBL] [Abstract][Full Text] [Related]
12. Turing-Hopf patterns on growing domains: The torus and the sphere. Sánchez-Garduño F; Krause AL; Castillo JA; Padilla P J Theor Biol; 2019 Nov; 481():136-150. PubMed ID: 30266461 [TBL] [Abstract][Full Text] [Related]
13. Bifurcation and patterns induced by flow in a prey-predator system with Beddington-DeAngelis functional response. Dai C; Zhao M Phys Rev E; 2020 Jul; 102(1-1):012209. PubMed ID: 32794984 [TBL] [Abstract][Full Text] [Related]
14. Linear and Weakly Nonlinear Stability Analyses of Turing Patterns for Diffusive Predator-Prey Systems in Freshwater Marsh Landscapes. Zhang L; Zhang F; Ruan S Bull Math Biol; 2017 Mar; 79(3):560-593. PubMed ID: 28138877 [TBL] [Abstract][Full Text] [Related]
15. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations. Schüler D; Alonso S; Torcini A; Bär M Chaos; 2014 Dec; 24(4):043142. PubMed ID: 25554062 [TBL] [Abstract][Full Text] [Related]
16. Existence of complex patterns in the Beddington-DeAngelis predator-prey model. Haque M Math Biosci; 2012 Oct; 239(2):179-90. PubMed ID: 22659347 [TBL] [Abstract][Full Text] [Related]
17. Spatiotemporal complexity in a predator--prey model with weak Allee effects. Cai Y; Banerjee M; Kang Y; Wang W Math Biosci Eng; 2014 Dec; 11(6):1247-74. PubMed ID: 25365601 [TBL] [Abstract][Full Text] [Related]
18. Ratio-dependent predator-prey models of interacting populations. Haque M Bull Math Biol; 2009 Feb; 71(2):430-52. PubMed ID: 19083063 [TBL] [Abstract][Full Text] [Related]
19. Analysis of a Prey-Predator Model with Non-local Interaction in the Prey Population. Pal S; Ghorai S; Banerjee M Bull Math Biol; 2018 Apr; 80(4):906-925. PubMed ID: 29524098 [TBL] [Abstract][Full Text] [Related]
20. Multi-stable and spatiotemporal staggered patterns in a predator-prey model with predator-taxis and delay. Xing Y; Jiang W; Cao X Math Biosci Eng; 2023 Sep; 20(10):18413-18444. PubMed ID: 38052564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]