These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33120552)

  • 1. A new model of dengue fever in terms of fractional derivative.
    Fatmawati F; Jan R; Khan MA; Khan Y; Ullah S
    Math Biosci Eng; 2020 Aug; 17(5):5267-5287. PubMed ID: 33120552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractional-calculus analysis of the transmission dynamics of the dengue infection.
    Srivastava HM; Jan R; Jan A; Deebani W; Shutaywi M
    Chaos; 2021 May; 31(5):053130. PubMed ID: 34240948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical analysis of a power-law form time dependent vector-borne disease transmission model.
    Sardar T; Saha B
    Math Biosci; 2017 Jun; 288():109-123. PubMed ID: 28274854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Qualitative Analysis of the Transmission Dynamics of Dengue with the Effect of Memory, Reinfection, and Vaccination.
    Tang TQ; Jan R; Bonyah E; Shah Z; Alzahrani E
    Comput Math Methods Med; 2022; 2022():7893570. PubMed ID: 36238487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations and fractional modeling of dengue transmission in Bangladesh.
    Akter S; Jin Z
    Math Biosci Eng; 2023 Mar; 20(6):9891-9922. PubMed ID: 37322916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal bang-bang control for variable-order dengue virus; numerical studies.
    Sweilam NH; Al-Mekhlafi SM; Shatta SA
    J Adv Res; 2021 Sep; 32():37-44. PubMed ID: 34484824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Memory impacts in hepatitis C: A global analysis of a fractional-order model with an effective treatment.
    Naik PA; Yavuz M; Qureshi S; Naik MU; Owolabi KM; Soomro A; Ganie AH
    Comput Methods Programs Biomed; 2024 Sep; 254():108306. PubMed ID: 38968828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical Modelling of Dengue Transmission with Intervention Strategies Using Fractional Derivatives.
    Hamdan N'; Kilicman A
    Bull Math Biol; 2022 Oct; 84(12):138. PubMed ID: 36287255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A generic model for a single strain mosquito-transmitted disease with memory on the host and the vector.
    Sardar T; Rana S; Bhattacharya S; Al-Khaled K; Chattopadhyay J
    Math Biosci; 2015 May; 263():18-36. PubMed ID: 25645185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fractional order mathematical model for COVID-19 dynamics with quarantine, isolation, and environmental viral load.
    Aba Oud MA; Ali A; Alrabaiah H; Ullah S; Khan MA; Islam S
    Adv Differ Equ; 2021; 2021(1):106. PubMed ID: 33613668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal control strategies for dengue fever spread in Johor, Malaysia.
    Abidemi A; Aziz NAB
    Comput Methods Programs Biomed; 2020 Nov; 196():105585. PubMed ID: 32554024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nonlinear fractional epidemic model for the Marburg virus transmission with public health education.
    Addai E; Adeniji A; Ngungu M; Tawiah GK; Marinda E; Asamoah JKK; Khan MA
    Sci Rep; 2023 Nov; 13(1):19292. PubMed ID: 37935815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings.
    Yang HM; Macoris Mde L; Galvani KC; Andrighetti MT
    Biosystems; 2011 Mar; 103(3):360-71. PubMed ID: 21093536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of a fractional-order model for dengue transmission dynamics with quarantine and vaccination measures.
    Usman M; Abbas M; Khan SH; Omame A
    Sci Rep; 2024 May; 14(1):11954. PubMed ID: 38796642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A network model for control of dengue epidemic using sterile insect technique.
    Mishra A; Ambrosio B; Gakkhar S; Aziz-Alaoui MA
    Math Biosci Eng; 2018 Apr; 15(2):441-460. PubMed ID: 29161844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating the basic reproduction number for single-strain dengue fever epidemics.
    Khan A; Hassan M; Imran M
    Infect Dis Poverty; 2014; 3():12. PubMed ID: 24708869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dengue in the Philippines: model and analysis of parameters affecting transmission.
    de Los Reyes V AA; Escaner JML
    J Biol Dyn; 2018 Dec; 12(1):894-912. PubMed ID: 30353774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of a non-integer order mathematical model for double strains of dengue and COVID-19 co-circulation using an efficient finite-difference method.
    Obiajulu EF; Omame A; Inyama SC; Diala UH; AlQahtani SA; Al-Rakhami MS; Alawwad AM; Alotaibi AA
    Sci Rep; 2023 Oct; 13(1):17787. PubMed ID: 37853028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of a two-sex model for the population ecology of dengue mosquitoes in the presence of Wolbachia.
    Taghikhani R; Sharomi O; Gumel AB
    Math Biosci; 2020 Oct; 328():108426. PubMed ID: 32712316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the impact of serostatus-dependent immunization on mitigating the spread of dengue virus.
    Xue L; Jin X; Zhu H
    J Math Biol; 2023 Jun; 87(1):5. PubMed ID: 37301798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.