These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33120566)

  • 1. The relation between host competence and vector-feeding preference in a multi-host model: Chagas and Cutaneous Leishmaniasis.
    Rivera RC; Bilal S; Michael E
    Math Biosci Eng; 2020 Aug; 17(5):5561-5583. PubMed ID: 33120566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vector Preference Annihilates Backward Bifurcation and Reduces Endemicity.
    Caja Rivera R; Barradas I
    Bull Math Biol; 2019 Nov; 81(11):4447-4469. PubMed ID: 30569327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the effect of zooprophylaxis on zoonotic cutaneous leishmaniasis transmission: a system dynamics approach.
    Kaabi B; Ahmed SB
    Biosystems; 2013 Dec; 114(3):253-60. PubMed ID: 24157699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competent Hosts and Endemicity of Multi-Host Vector-Borne Diseases.
    Sanabria Malagón C; Vargas Bernal E
    Bull Math Biol; 2019 Nov; 81(11):4470-4483. PubMed ID: 30535844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward an Ecological Framework for Assessing Reservoirs of Vector-Borne Pathogens: Wildlife Reservoirs of Trypanosoma cruzi across the Southern United States.
    Hodo CL; Hamer SA
    ILAR J; 2017 Dec; 58(3):379-392. PubMed ID: 29106561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-stage Vector-Borne Zoonoses Models: A Global Analysis.
    Bichara D; Iggidr A; Smith L
    Bull Math Biol; 2018 Jul; 80(7):1810-1848. PubMed ID: 29696599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vector-Borne Pathogen and Host Evolution in a Structured Immuno-Epidemiological System.
    Gulbudak H; Cannataro VL; Tuncer N; Martcheva M
    Bull Math Biol; 2017 Feb; 79(2):325-355. PubMed ID: 28032207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathogens, reservoirs, and vectors involved in the transmission of vector-borne and zoonotic diseases in a Colombian region.
    Carrasquilla MC; Ortiz MI; Amórtegui-Hernández D; García-Restrepo S; León C; Méndez-Cardona S; González C
    Braz J Microbiol; 2023 Jun; 54(2):1145-1156. PubMed ID: 36828985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reservoir host competence and the role of domestic and commensal hosts in the transmission of Trypanosoma cruzi.
    Gürtler RE; Cardinal MV
    Acta Trop; 2015 Nov; 151():32-50. PubMed ID: 26051910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid Lagrangian-Eulerian model for vector-borne diseases.
    Gao D; Yuan X
    J Math Biol; 2024 Jun; 89(2):16. PubMed ID: 38890206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vector-borne diseases and the basic reproduction number: a case study of African horse sickness.
    Lord CC; Woolhouse ME; Heesterbeek JA; Mellor PS
    Med Vet Entomol; 1996 Jan; 10(1):19-28. PubMed ID: 8834738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathogens manipulate the preference of vectors, slowing disease spread in a multi-host system.
    Shoemaker LG; Hayhurst E; Weiss-Lehman CP; Strauss AT; Porath-Krause A; Borer ET; Seabloom EW; Shaw AK
    Ecol Lett; 2019 Jul; 22(7):1115-1125. PubMed ID: 31090159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vector-Borne Disease Models with Active and Inactive Vectors: A Simple Way to Consider Biting Behavior.
    Simoy MI; Aparicio JP
    Bull Math Biol; 2021 Dec; 84(1):22. PubMed ID: 34940929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geographic range of vector-borne infections and their vectors: the role of African wildlife.
    van Vuuren M; Penzhorn BL
    Rev Sci Tech; 2015 Apr; 34(1):139-49. PubMed ID: 26470454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data scarcity and ecological complexity: the cutaneous leishmaniasis dynamics in Ecuador.
    Morales D; Paredes M; Morales-Butler EJ; Cruz-Aponte M; Arriola L; Cevallos V; Ponce P; Mubayi A
    J R Soc Interface; 2019 Aug; 16(157):20190141. PubMed ID: 31455165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the ratio of vector and host densities in the evolution of transmission modes in vector-borne diseases. The example of sylvatic Trypanosoma cruzi.
    Pelosse P; Kribs-Zaleta CM
    J Theor Biol; 2012 Nov; 312():133-42. PubMed ID: 22892441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling triatomine bug population and Trypanosoma rangeli transmission dynamics: Co-feeding, pathogenic effect and linkage with chagas disease.
    Wu X; Gao D; Song Z; Wu J
    Math Biosci; 2020 Jun; 324():108326. PubMed ID: 32092467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vector-borne diseases models with residence times - A Lagrangian perspective.
    Bichara D; Castillo-Chavez C
    Math Biosci; 2016 Nov; 281():128-138. PubMed ID: 27622812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling transmission of vector-borne pathogens shows complex dynamics when vector feeding sites are limited.
    Kershenbaum A; Stone L; Ostfeld RS; Blaustein L
    PLoS One; 2012; 7(5):e36730. PubMed ID: 22590597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan.
    Mills JN; Gage KL; Khan AS
    Environ Health Perspect; 2010 Nov; 118(11):1507-14. PubMed ID: 20576580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.