These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33120566)

  • 21. Mathematical analysis of a model for zoonotic visceral leishmaniasis.
    Hussaini N; Okuneye K; Gumel AB
    Infect Dis Model; 2017 Nov; 2(4):455-474. PubMed ID: 30137723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trypanosoma cruzi transmission dynamics in a synanthropic and domesticated host community.
    Flores-Ferrer A; Waleckx E; Rascalou G; Dumonteil E; Gourbière S
    PLoS Negl Trop Dis; 2019 Dec; 13(12):e0007902. PubMed ID: 31834879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Host-parasite interactions in vector-borne protozoan infections.
    Baneth G; Bates PA; Olivieri A
    Eur J Protistol; 2020 Oct; 76():125741. PubMed ID: 33147559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The dynamics of vector-transmitted diseases in human communities.
    Rogers DJ
    Philos Trans R Soc Lond B Biol Sci; 1988 Oct; 321(1207):513-39. PubMed ID: 2907156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of asymptomatics and dogs on leishmaniasis propagation.
    Esteva L; Vargas C; Vargas de León C
    Math Biosci; 2017 Nov; 293():46-55. PubMed ID: 28864398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ectoparasites and other epifaunistic arthropods of sympatric cotton mice and golden mice: comparisons and implications for vector-borne zoonotic diseases.
    Durden LA; Polur RN; Nims T; Banks CW; Oliver JH
    J Parasitol; 2004 Dec; 90(6):1293-7. PubMed ID: 15715219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How will climate change pathways and mitigation options alter incidence of vector-borne diseases? A framework for leishmaniasis in South and Meso-America.
    Purse BV; Masante D; Golding N; Pigott D; Day JC; Ibañez-Bernal S; Kolb M; Jones L
    PLoS One; 2017; 12(10):e0183583. PubMed ID: 29020041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatio-temporal modelling of Leishmania infantum infection among domestic dogs: a simulation study and sensitivity analysis applied to rural Brazil.
    Buckingham-Jeffery E; Hill EM; Datta S; Dilger E; Courtenay O
    Parasit Vectors; 2019 May; 12(1):215. PubMed ID: 31064395
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Relationship between Vector Species Richness and the Risk of Vector-Borne Infectious Diseases.
    Takimoto G; Shirakawa H; Sato T
    Am Nat; 2022 Sep; 200(3):330-344. PubMed ID: 35977790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding pathogen survival and transmission by arthropod vectors to prevent human disease.
    Barillas-Mury C; Ribeiro JMC; Valenzuela JG
    Science; 2022 Sep; 377(6614):eabc2757. PubMed ID: 36173836
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An age-structured vector-borne disease model with horizontal transmission in the host.
    Wang X; Chen Y
    Math Biosci Eng; 2018 Oct; 15(5):1099-1116. PubMed ID: 30380301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transmission parameters of vector-borne infections.
    Desenclos JC
    Med Mal Infect; 2011 Nov; 41(11):588-93. PubMed ID: 21993137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling Relapsing Disease Dynamics in a Host-Vector Community.
    Johnson TL; Landguth EL; Stone EF
    PLoS Negl Trop Dis; 2016 Feb; 10(2):e0004428. PubMed ID: 26910884
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ecosystem dynamics, biological diversity and emerging infectious diseases.
    Roche B; Guégan JF
    C R Biol; 2011 May; 334(5-6):385-92. PubMed ID: 21640947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ecological Niche Modeling of main reservoir hosts of zoonotic cutaneous leishmaniasis in Iran.
    Gholamrezaei M; Mohebali M; Hanafi-Bojd AA; Sedaghat MM; Shirzadi MR
    Acta Trop; 2016 Aug; 160():44-52. PubMed ID: 27150212
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mixed-species assemblages and disease: the importance of differential vector and parasite attraction in transmission dynamics.
    Trillo PA; Bernal XE; Hall RJ
    Philos Trans R Soc Lond B Biol Sci; 2023 Jun; 378(1878):20220109. PubMed ID: 37066659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of host diversity on vector-borne disease: the conditions under which diversity will amplify or dilute the disease risk.
    Miller E; Huppert A
    PLoS One; 2013; 8(11):e80279. PubMed ID: 24303003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Global dynamics of a vector-host epidemic model with age of infection.
    Dang YX; Qiu ZP; Li XZ; Martcheva M
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1159-1186. PubMed ID: 29161855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transmission Dynamics and Control Mechanisms of Vector-Borne Diseases with Active and Passive Movements Between Urban and Satellite Cities.
    Harvim P; Zhang H; Georgescu P; Zhang L
    Bull Math Biol; 2019 Nov; 81(11):4518-4563. PubMed ID: 31641984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimating reservoir competence of Borrelia burgdorferi hosts: prevalence and infectivity, sensitivity, and specificity.
    Brunner JL; LoGiudice K; Ostfeld RS
    J Med Entomol; 2008 Jan; 45(1):139-47. PubMed ID: 18283955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.