These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33120566)

  • 41. Exploring vector-borne infection ecology in multi-host communities: A case study of West Nile virus.
    Marini G; Rosá R; Pugliese A; Heesterbeek H
    J Theor Biol; 2017 Feb; 415():58-69. PubMed ID: 27986465
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Emerging Vector-Borne Diseases - Incidence through Vectors.
    Savić S; Vidić B; Grgić Z; Potkonjak A; Spasojevic L
    Front Public Health; 2014; 2():267. PubMed ID: 25520951
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modelling the influence of host community composition in a sylvatic Trypanosoma cruzi system.
    Erazo D; Cordovez J; Cabrera C; Calzada JE; Saldaña A; Gottdenker NL
    Parasitology; 2017 Dec; 144(14):1881-1889. PubMed ID: 28701240
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exploring the influence of competition on arbovirus invasion risk in communities.
    Dimas Martins A; Ten Bosch Q; Heesterbeek JAP
    PLoS One; 2022; 17(10):e0275687. PubMed ID: 36223367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analytic calculation of finite-population reproductive numbers for direct- and vector-transmitted diseases with homogeneous mixing.
    Keegan L; Dushoff J
    Bull Math Biol; 2014 May; 76(5):1143-54. PubMed ID: 24756856
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Zoonotic aspects of vector-borne infections.
    Failloux AB; Moutailler S
    Rev Sci Tech; 2015 Apr; 34(1):175-83, 165-74. PubMed ID: 26470456
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modeling spatial risk of zoonotic cutaneous leishmaniasis in Central Iran.
    Shiravand B; Tafti AAD; Hanafi-Bojd AA; Almodaresi SA; Mirzaei M; Abai MR
    Acta Trop; 2018 Sep; 185():327-335. PubMed ID: 29920233
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Asymptotic analysis of a vector-borne disease model with the age of infection.
    Wang X; Chen Y; Martcheva M; Rong L
    J Biol Dyn; 2020 Dec; 14(1):332-367. PubMed ID: 32324106
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Towards a Semi-Automatic Early Warning System for Vector-Borne Diseases.
    Pergantas P; Papanikolaou NE; Malesios C; Tsatsaris A; Kondakis M; Perganta I; Tselentis Y; Demiris N
    Int J Environ Res Public Health; 2021 Feb; 18(4):. PubMed ID: 33668472
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Incorporating tick feeding behaviour into R
    Johnstone-Robertson SP; Diuk-Wasser MA; Davis SA
    Theor Popul Biol; 2020 Feb; 131():25-37. PubMed ID: 31730874
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Epidemiological Implications of Host Biodiversity and Vector Biology: Key Insights from Simple Models.
    Dobson AD; Auld SK
    Am Nat; 2016 Apr; 187(4):405-22. PubMed ID: 27028070
    [TBL] [Abstract][Full Text] [Related]  

  • 52. What is a vector?
    Wilson AJ; Morgan ER; Booth M; Norman R; Perkins SE; Hauffe HC; Mideo N; Antonovics J; McCallum H; Fenton A
    Philos Trans R Soc Lond B Biol Sci; 2017 May; 372(1719):. PubMed ID: 28289253
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Species interactions affect the spread of vector-borne plant pathogens independent of transmission mode.
    Crowder DW; Li J; Borer ET; Finke DL; Sharon R; Pattemore DE; Medlock J
    Ecology; 2019 Sep; 100(9):e02782. PubMed ID: 31170312
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Data-driven predictions and novel hypotheses about zoonotic tick vectors from the genus Ixodes.
    Yang LH; Han BA
    BMC Ecol; 2018 Feb; 18(1):7. PubMed ID: 29448923
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Using the basic reproduction number to assess the effects of climate change in the risk of Chagas disease transmission in Colombia.
    Cordovez JM; Rendon LM; Gonzalez C; Guhl F
    Acta Trop; 2014 Jan; 129():74-82. PubMed ID: 24416781
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of heterogeneity on the invasion probability of mosquito-borne diseases in multi-host models.
    Bolzoni L; Pugliese A; Rosà R
    J Theor Biol; 2015 Jul; 377():25-35. PubMed ID: 25886821
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Does bird metabolic rate influence mosquito feeding preference?
    Yan J; Broggi J; Martínez-de la Puente J; Gutiérrez-López R; Gangoso L; Soriguer R; Figuerola J
    Parasit Vectors; 2018 Feb; 11(1):110. PubMed ID: 29471885
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamical behaviors of a vector-borne diseases model with two time delays on bipartite networks.
    Zhao R; Liu Q; Zhang H
    Math Biosci Eng; 2021 Apr; 18(4):3073-3091. PubMed ID: 34198376
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Approximation methods for analyzing multiscale stochastic vector-borne epidemic models.
    Liu X; Mubayi A; Reinhold D; Zhu L
    Math Biosci; 2019 Mar; 309():42-65. PubMed ID: 30658089
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deforestation: effects on vector-borne disease.
    Walsh JF; Molyneux DH; Birley MH
    Parasitology; 1993; 106 Suppl():S55-75. PubMed ID: 8488073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.