These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 33120959)

  • 1. A Multimodal Intention Detection Sensor Suite for Shared Autonomy of Upper-Limb Robotic Prostheses.
    Gardner M; Mancero Castillo CS; Wilson S; Farina D; Burdet E; Khoo BC; Atashzar SF; Vaidyanathan R
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33120959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
    Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S
    J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping.
    Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL
    J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning-Based Motion-Intention Prediction for End-Point Control of Upper-Limb-Assistive Robots.
    Yang S; Garg NP; Gao R; Yuan M; Noronha B; Ang WT; Accoto D
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding the grasping intention from electromyography during reaching motions.
    Batzianoulis I; Krausz NE; Simon AM; Hargrove L; Billard A
    J Neuroeng Rehabil; 2018 Jun; 15(1):57. PubMed ID: 29940991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics.
    Xiloyannis M; Gavriel C; Thomik AAC; Faisal AA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1785-1801. PubMed ID: 28880183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Robotic Hand Prosthesis Control With Eye Tracking and Computer Vision: A Multimodal Approach Based on the Visuomotor Behavior of Grasping.
    Cognolato M; Atzori M; Gassert R; Müller H
    Front Artif Intell; 2021; 4():744476. PubMed ID: 35146422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of Upper Limb Action Intention Based on IMU.
    Cui JW; Li ZG; Du H; Yan BY; Lu PD
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Control Architecture for Grasp Strength Regulation in Myocontrolled Robotic Hands Using Vibrotactile Feedback: Preliminary Results.
    Meattini R; Biagiotti L; Palli G; De Gregorio D; Melchiorri C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1272-1277. PubMed ID: 31374804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HANDS: a multimodal dataset for modeling toward human grasp intent inference in prosthetic hands.
    Han M; Günay SY; Schirner G; Padır T; Erdoğmuş D
    Intell Serv Robot; 2020 Jan; 13(1):179-185. PubMed ID: 33312264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EMG-Based 3D Hand Motor Intention Prediction for Information Transfer from Human to Robot.
    Feleke AG; Bi L; Fei W
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33673141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upper-limb prosthetic control using wearable multichannel mechanomyography.
    Wilson S; Vaidyanathan R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1293-1298. PubMed ID: 28813999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable MMG-Plus-One Armband: Evaluation of Normal Force on Mechanomyography (MMG) to Enhance Human-Machine Interfacing.
    Castillo CSM; Wilson S; Vaidyanathan R; Atashzar SF
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():196-205. PubMed ID: 33290226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CNN-Based Hand Grasping Prediction and Control via Postural Synergy Basis Extraction.
    Liu Q; Li M; Yin C; Qian G; Meng W; Ai Q; Hu J
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Myoelectric Control Interface for Upper-Limb Robotic Rehabilitation Following Spinal Cord Injury.
    McDonald CG; Sullivan JL; Dennis TA; O'Malley MK
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):978-987. PubMed ID: 32167899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurorobotic fusion of prosthetic touch, kinesthesia, and movement in bionic upper limbs promotes intrinsic brain behaviors.
    Marasco PD; Hebert JS; Sensinger JW; Beckler DT; Thumser ZC; Shehata AW; Williams HE; Wilson KR
    Sci Robot; 2021 Sep; 6(58):eabf3368. PubMed ID: 34516746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance evaluation of 3D vision-based semi-autonomous control method for assistive robotic manipulator.
    Ka HW; Chung CS; Ding D; James K; Cooper R
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):140-145. PubMed ID: 28326859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extending mode switching to multiple degrees of freedom in hand prosthesis control is not efficient.
    Amsuess S; Goebel P; Graimann B; Farina D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():658-61. PubMed ID: 25570045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot Intelligent Grasp of Unknown Objects Based on Multi-Sensor Information.
    Ji SQ; Huang MB; Huang HP
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30986985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.